Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated reactive transport simulations in heterogeneous porous media using Reaktoro and Firedrake (2009.01194v2)

Published 17 Aug 2020 in cs.CE and cs.LG

Abstract: This work investigates the performance of the on-demand machine learning (ODML) algorithm introduced in Leal et al. (2020) when applied to different reactive transport problems in heterogeneous porous media. ODML was devised to accelerate the computationally expensive geochemical reaction calculations in reactive transport simulations. We demonstrate that the ODML algorithm speeds up these calculations by one to three orders of magnitude. Such acceleration, in turn, significantly accelerates the entire reactive transport simulation. The numerical experiments are performed by implementing the coupling of two open-source software packages: Reaktoro (Leal, 2015) and Firedrake (Rathgeber et al., 2016).

Citations (2)

Summary

We haven't generated a summary for this paper yet.