Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PipeFusion: Patch-level Pipeline Parallelism for Diffusion Transformers Inference (2405.14430v3)

Published 23 May 2024 in cs.CV, cs.AI, and cs.PF

Abstract: This paper presents PipeFusion, an innovative parallel methodology to tackle the high latency issues associated with generating high-resolution images using diffusion transformers (DiTs) models. PipeFusion partitions images into patches and the model layers across multiple GPUs. It employs a patch-level pipeline parallel strategy to orchestrate communication and computation efficiently. By capitalizing on the high similarity between inputs from successive diffusion steps, PipeFusion reuses one-step stale feature maps to provide context for the current pipeline step. This approach notably reduces communication costs compared to existing DiTs inference parallelism, including tensor parallel, sequence parallel and DistriFusion. PipeFusion also exhibits superior memory efficiency, because it can distribute model parameters across multiple devices, making it more suitable for DiTs with large parameter sizes, such as Flux.1. Experimental results demonstrate that PipeFusion achieves state-of-the-art performance on 8xL40 PCIe GPUs for Pixart, Stable-Diffusion 3 and Flux.1 models.Our Source code is available at https://github.com/xdit-project/xDiT.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com