Revisiting the dynamics of a charged spinning body in curved spacetime (2405.13784v3)
Abstract: We analyse the motion of the spinning body (in the pole-dipole approximation) in the gravitational and electromagnetic fields described by the Mathisson-Papapetrou-Dixon-Souriau equations. First, we define a novel spin condition for the body with the magnetic dipole moment proportional to spin, which generalizes the one proposed by Ohashi-Kyrian-Semer\'ak for gravity. As a result, we get the whole family of charged spinning particle models in the curved spacetime with remarkably simple dynamics (momentum and velocity are parallel). Applying the reparametrization procedure, for a specific dipole moment, we obtain equations of motion with constant mass and gyromagnetic factor. Next, we show that these equations follow from an effective Hamiltonian formalism, previously interpreted as a classical model of the charged Dirac particle.
- J. Frenkel, “Die Elektrodynamik des rotierenden Elektrons” Z. Phys. 37 (1926) 243
- L. Thomas, “The kinematics of an electron with an axis” Phil. Mag. Ser. 7 3 (1927) 1
- M. Mathisson, “Neue mechanik materieller systemes” Acta Phys. Polon. 6 (1937) 163
- J. Weyssenhoff, A. Raabe, “Relativistic dynamics of spin-fluids and spin particles” Acta Phys. Polon. 9 (1947) 7
- A. Papapetrou, “Spinning test particles in general relativity” Proc. R. Soc. London, Ser. A 209 (1951) 248
- W. Dixon, “A Covariant Multipole Formalism for Extended Test Bodies in General Relativity” Nuovo Cimento 34 (1964) 317
- W. Dixon, “On a Classical Theory of Charged Particles with Spin and the Classical Limit of the Dirac Equation” Nuovo Cimento 38 (1965) 1916
- W. Dixon, “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum” Proc. R. Soc. London, Ser. A 314 (1970) 499
- J. Souriau, “Modéle de particule á spin dans le champ électromagnétique et gravitationnel” Ann. I. H. P. 20 (1974) 315
- T. Damour, Editorial note to Jean-Marie Souriau’s “On the motion of spinning particles in general relativity” arXiv:2401.10013 (2024)
- T. Newton, E. Wigner, “Localized States for Elementary Systems” Rev. Mod. Phys. 21 (1949) 400
- M. Pryce, “The Mass-Centre in the Restricted Theory of Relativity and Its Connexion with the Quantum Theory of Elementary Particles” Proc. R. Soc. A 195 (1948) 62
- E. Corinaldesi, A. Papapetrou, “Spinning test-particles in general relativity. II” Proc. R. Soc. Lond. A 209 (1951) 259
- F. Pirani, “On the Physical significance of the Riemann tensor” Acta Phys. Pol. 15 (1956) 389
- W. Tulczyjew, “Motion of multipole particles in General Relativity theory’ Acta Phys. Pol. 18 (1959) 393
- A. Hanson, T. Regge, “The relativistic spherical top” Ann. Phys. 87 (1974) 498
- M. Carmeli, “Classical Fields: General Relativity and Gauge Theory” J. Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore (1982)
- A. Ohashi, “Multipole particle in relativity” Phys. Rev. D 68 (2003) 044009
- K. Kyrian, O. Semerák, “Spinning test particles in a Kerr field II” Mon. Not. Roy. Astron. Soc. 382 (2007) 1922
- E. Barausse, E. Racine, A. Buonanno, “Hamiltonian of a spinning test-particle in curved spacetime” Phys. Rev. D 80 (2009) 104025
- S. Hergt, J. Steinhoff, G. Schäfer, “The reduced Hamiltonian for next-to-leading-order spin-squared dynamics of general compact binaries” Class. Quant. Grav. 27 (2010) 135007
- J. Steinhoff, “Canonical Formulation of Spin in General Relativity” Ann. Phys. 523 (2011) 296
- R. Porto, “Next to leading order spin-orbit effects in the motion of inspiralling compact binaries” Class. Quant. Grav. 27 (2010) 205001
- G. Lukes-Gerakopoulos, J. Seyrich, D. Kunst, “Investigating spinning test particles: spin supplementary conditions and the Hamiltonian formalism” Phys. Rev. D 90 (2014) 104019
- G. Lukes-Gerakopoulos, “Time parameterizations and spin supplementary conditions of the Mathisson-Papapetrou-Dixon equations” Phys. Rev. D 96 (2017) 104023
- I. Timogiannis, G. Lukes-Gerakopoulos, T. Apostolatos, “Spinning test body orbiting around a Schwarzschild black hole: Comparing Spin Supplementary Conditions for Circular Equatorial Orbits” Phys. Rev. D 104 (2021) 024042
- L. Costa, G. Lukes-Gerakopoulos, O. Semerák, “Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition” Phys. Rev. D 97 (2018) 084023
- P. Ramond, “On the integrability of extended test body dynamics around black holes” arXiv:2402.02670 (2024)
- I. Khriplovich, “Particle with internal angular momentum in a gravitational field” Sov. Phys. JETP 69 (1989) 217
- J. van Holten, “On the electrodynamics of spinning particles” Nucl.P hys. B 356 (1991) 3
- R. Rietdijk, J. van Holten, “Spinning particles in Schwarzschild space-time” Class. Quant. Grav. 10 (1993) 575
- G. d’Ambrosi, S. Satish Kumar, J. van Holten, “Covariant hamiltonian spin dynamics in curved spacetime” Phys. Lett. B 743 (2015) 478
- G. d’Ambrosi, S. Satish Kumar, J. van de Vis, J. van Holten, “Spinning bodies in curved spacetime” Phys. Rev. D 93 (2016) 044051
- J. van Holten, “Spinning bodies in General Relativity” Int. J. of Geom. Methods in Mod. Physics 13 (2016) 1640002
- V. Witzany, J. Steinhoff, G. Lukes-Gerakopoulos, “Hamiltonians and canonical coordinates for spinning particles in curved space-time” Class. Quant. Grav. 36 (2019) 075003
- L. Costa, J. Natário, “Center of Mass, Spin Supplementary Conditions, and the Momentum of Spinning Particles” in Equations of Motion in Relativistic Gravity Springer (2015) 215
- L. Costa, J. Natário, “Gravito-electromagnetic analogies” Gen. Rel. Grav. 46 (2014) 1792
- L. Costa, J. Natário, M. Zilhão, “Spacetime dynamics of spinning particles - exact electromagnetic analogies” Phys. Rev. D 93 (2016) 104006
- R. Monteiro, D. O’Connell, C. White, “Black holes and the double copy” JHEP 12 (2014) 056
- A. Luna, R. Monteiro, D. O’Connell, C. White, “The classical double copy for Taub-NUT spacetime” Phys. Lett. B 750 (2015) 272
- N. Bahjat-Abbas, A. Luna, C. White, “The Kerr-Schild double copy in curved spacetime” JHEP 12 (2017) 004
- A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg, C. White, “Perturbative spacetimes from Yang-Mills theory” JHEP 04 (2017) 069
- M. Gurses, B. Tekin, “Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory” Phys. Rev. D 98 (2018) 126017
- A. Ilderton, “Screw-symmetric gravitational waves: a double copy of the vortex” Phys. Lett. B 782 (2018) 22
- K. Andrzejewski, S. Prencel, “From polarized gravitational waves to analytically solvable electromagnetic beams” Phys. Rev. D 100 (2019) 045006
- R. Hojman, S. Hojman, “Spinning charged test particles in a Kerr-Newman background” Phys. Rev. D 15 (1971) 2724
- D. Bini, G. Gemelli, “Scattering of spinning test particles by gravitational plane waves” Il Nuovo Cimento B 112 (1997) 165
- R. Porto, “Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity” Phys. Rev. D 73 (2006) 104031
- A. Deriglazov, A. Pupasov-Maksimov, “Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung” Nucl. Phys. B 885 (2014) 1
- A. Deriglazov, W. Ramirez, “Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations” Phys. Rev. D 92 (2015) 124017
- V. Witzany, “Hamilton-Jacobi equation for spinning particles near black holes” Phys. Rev. D 100 (2019) 104030
- P. Ramond, “Symplectic mechanics of relativistic spinning compact bodies I.: Covariant foundations and integrability around black holes” arXiv:2210.03866 (2022)
- R. Rüdiger, “Conserved Quantities of Spinning Test Particles in General Relativity. I” Proc. Roy. Soc. Lond. A 375 (1981) 185
- G. Compére, A. Druart, “Complete set of quasi-conserved quantities for spinning particles around Kerr” SciPost Phys. 12 (2022) 012
- M. Mohseni, R. Tucker, C. Wang, “On the motion of spinning test particles in plane gravitational waves” Class. Quant. Grav. 18 (2001) 3007
- S. Kessari, D. Singh, R. Tucker, C. Wang, “Scattering of Spinning Test Particles by Plane Gravitational and Electromagnetic Waves” Class. Quant. Grav. 19 (2002) 4943
- M. Elbistan, N. Dimakis, K. Andrzejewski, P. Horvathy, P. Kosiński, P.-M. Zhang, “Conformal symmetries and integrals of the motion in pp waves with external electromagnetic fields” Ann. Phys. 418 (2020) 168180
- F. Cianfrani, I. Milillo, G. Montani, “Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework” Phys. Lett. A 366 (2007) 7
- S. Hojman, “Lagrangian theory of the motion of spinning particles in torsion gravitational theories” Phys. Rev. D 18 (1978) 2741
- Z. Zhang, G. Fan, J. Jia, “Effect of Particle Spin on Trajectory Deflection and Gravitational Lensing” JCAP 09 (2022) 061
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.