Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Revisiting the dynamics of a charged spinning body in curved spacetime (2405.13784v3)

Published 22 May 2024 in gr-qc and hep-th

Abstract: We analyse the motion of the spinning body (in the pole-dipole approximation) in the gravitational and electromagnetic fields described by the Mathisson-Papapetrou-Dixon-Souriau equations. First, we define a novel spin condition for the body with the magnetic dipole moment proportional to spin, which generalizes the one proposed by Ohashi-Kyrian-Semer\'ak for gravity. As a result, we get the whole family of charged spinning particle models in the curved spacetime with remarkably simple dynamics (momentum and velocity are parallel). Applying the reparametrization procedure, for a specific dipole moment, we obtain equations of motion with constant mass and gyromagnetic factor. Next, we show that these equations follow from an effective Hamiltonian formalism, previously interpreted as a classical model of the charged Dirac particle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. J. Frenkel, “Die Elektrodynamik des rotierenden Elektrons” Z. Phys. 37 (1926) 243
  2. L. Thomas, “The kinematics of an electron with an axis” Phil. Mag. Ser. 7 3 (1927) 1
  3. M. Mathisson, “Neue mechanik materieller systemes” Acta Phys. Polon. 6 (1937) 163
  4. J. Weyssenhoff, A. Raabe, “Relativistic dynamics of spin-fluids and spin particles” Acta Phys. Polon. 9 (1947) 7
  5. A. Papapetrou, “Spinning test particles in general relativity” Proc. R. Soc. London, Ser. A 209 (1951) 248
  6. W. Dixon, “A Covariant Multipole Formalism for Extended Test Bodies in General Relativity” Nuovo Cimento 34 (1964) 317
  7. W. Dixon, “On a Classical Theory of Charged Particles with Spin and the Classical Limit of the Dirac Equation” Nuovo Cimento 38 (1965) 1916
  8. W. Dixon, “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum” Proc. R. Soc. London, Ser. A 314 (1970) 499
  9. J. Souriau, “Modéle de particule á spin dans le champ électromagnétique et gravitationnel” Ann. I. H. P. 20 (1974) 315
  10. T. Damour, Editorial note to Jean-Marie Souriau’s “On the motion of spinning particles in general relativity” arXiv:2401.10013 (2024)
  11. T. Newton, E. Wigner, “Localized States for Elementary Systems” Rev. Mod. Phys. 21 (1949) 400
  12. M. Pryce, “The Mass-Centre in the Restricted Theory of Relativity and Its Connexion with the Quantum Theory of Elementary Particles” Proc. R. Soc. A 195 (1948) 62
  13. E. Corinaldesi, A. Papapetrou, “Spinning test-particles in general relativity. II” Proc. R. Soc. Lond. A 209 (1951) 259
  14. F. Pirani, “On the Physical significance of the Riemann tensor” Acta Phys. Pol. 15 (1956) 389
  15. W. Tulczyjew, “Motion of multipole particles in General Relativity theory’ Acta Phys. Pol. 18 (1959) 393
  16. A. Hanson, T. Regge, “The relativistic spherical top” Ann. Phys. 87 (1974) 498
  17. M. Carmeli, “Classical Fields: General Relativity and Gauge Theory” J. Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore (1982)
  18. A. Ohashi, “Multipole particle in relativity” Phys. Rev. D 68 (2003) 044009
  19. K. Kyrian, O. Semerák, “Spinning test particles in a Kerr field II” Mon. Not. Roy. Astron. Soc. 382 (2007) 1922
  20. E. Barausse, E. Racine, A. Buonanno, “Hamiltonian of a spinning test-particle in curved spacetime” Phys. Rev. D 80 (2009) 104025
  21. S. Hergt, J. Steinhoff, G. Schäfer, “The reduced Hamiltonian for next-to-leading-order spin-squared dynamics of general compact binaries” Class. Quant. Grav. 27 (2010) 135007
  22. J. Steinhoff, “Canonical Formulation of Spin in General Relativity” Ann. Phys. 523 (2011) 296
  23. R. Porto, “Next to leading order spin-orbit effects in the motion of inspiralling compact binaries” Class. Quant. Grav. 27 (2010) 205001
  24. G. Lukes-Gerakopoulos, J. Seyrich, D. Kunst, “Investigating spinning test particles: spin supplementary conditions and the Hamiltonian formalism” Phys. Rev. D 90 (2014) 104019
  25. G. Lukes-Gerakopoulos, “Time parameterizations and spin supplementary conditions of the Mathisson-Papapetrou-Dixon equations” Phys. Rev. D 96 (2017) 104023
  26. I. Timogiannis, G. Lukes-Gerakopoulos, T. Apostolatos, “Spinning test body orbiting around a Schwarzschild black hole: Comparing Spin Supplementary Conditions for Circular Equatorial Orbits” Phys. Rev. D 104 (2021) 024042
  27. L. Costa, G. Lukes-Gerakopoulos, O. Semerák, “Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition” Phys. Rev. D 97 (2018) 084023
  28. P. Ramond, “On the integrability of extended test body dynamics around black holes” arXiv:2402.02670 (2024)
  29. I. Khriplovich, “Particle with internal angular momentum in a gravitational field” Sov. Phys. JETP 69 (1989) 217
  30. J. van Holten, “On the electrodynamics of spinning particles” Nucl.P hys. B 356 (1991) 3
  31. R. Rietdijk, J. van Holten, “Spinning particles in Schwarzschild space-time” Class. Quant. Grav. 10 (1993) 575
  32. G. d’Ambrosi, S. Satish Kumar, J. van Holten, “Covariant hamiltonian spin dynamics in curved spacetime” Phys. Lett. B 743 (2015) 478
  33. G. d’Ambrosi, S. Satish Kumar, J. van de Vis, J. van Holten, “Spinning bodies in curved spacetime” Phys. Rev. D 93 (2016) 044051
  34. J. van Holten, “Spinning bodies in General Relativity” Int. J. of Geom. Methods in Mod. Physics 13 (2016) 1640002
  35. V. Witzany, J. Steinhoff, G. Lukes-Gerakopoulos, “Hamiltonians and canonical coordinates for spinning particles in curved space-time” Class. Quant. Grav. 36 (2019) 075003
  36. L. Costa, J. Natário, “Center of Mass, Spin Supplementary Conditions, and the Momentum of Spinning Particles” in Equations of Motion in Relativistic Gravity Springer (2015) 215
  37. L. Costa, J. Natário, “Gravito-electromagnetic analogies” Gen. Rel. Grav. 46 (2014) 1792
  38. L. Costa, J. Natário, M. Zilhão, “Spacetime dynamics of spinning particles - exact electromagnetic analogies” Phys. Rev. D 93 (2016) 104006
  39. R. Monteiro, D. O’Connell, C. White, “Black holes and the double copy” JHEP 12 (2014) 056
  40. A. Luna, R. Monteiro, D. O’Connell, C. White, “The classical double copy for Taub-NUT spacetime” Phys. Lett. B 750 (2015) 272
  41. N. Bahjat-Abbas, A. Luna, C. White, “The Kerr-Schild double copy in curved spacetime” JHEP 12 (2017) 004
  42. A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg, C. White, “Perturbative spacetimes from Yang-Mills theory” JHEP 04 (2017) 069
  43. M. Gurses, B. Tekin, “Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory” Phys. Rev. D 98 (2018) 126017
  44. A. Ilderton, “Screw-symmetric gravitational waves: a double copy of the vortex” Phys. Lett. B 782 (2018) 22
  45. K. Andrzejewski, S. Prencel, “From polarized gravitational waves to analytically solvable electromagnetic beams” Phys. Rev. D 100 (2019) 045006
  46. R. Hojman, S. Hojman, “Spinning charged test particles in a Kerr-Newman background” Phys. Rev. D 15 (1971) 2724
  47. D. Bini, G. Gemelli, “Scattering of spinning test particles by gravitational plane waves” Il Nuovo Cimento B 112 (1997) 165
  48. R. Porto, “Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity” Phys. Rev. D 73 (2006) 104031
  49. A. Deriglazov, A. Pupasov-Maksimov, “Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung” Nucl. Phys. B 885 (2014) 1
  50. A. Deriglazov, W. Ramirez, “Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations” Phys. Rev. D 92 (2015) 124017
  51. V. Witzany, “Hamilton-Jacobi equation for spinning particles near black holes” Phys. Rev. D 100 (2019) 104030
  52. P. Ramond, “Symplectic mechanics of relativistic spinning compact bodies I.: Covariant foundations and integrability around black holes” arXiv:2210.03866 (2022)
  53. R. Rüdiger, “Conserved Quantities of Spinning Test Particles in General Relativity. I” Proc. Roy. Soc. Lond. A 375 (1981) 185
  54. G. Compére, A. Druart, “Complete set of quasi-conserved quantities for spinning particles around Kerr” SciPost Phys. 12 (2022) 012
  55. M. Mohseni, R. Tucker, C. Wang, “On the motion of spinning test particles in plane gravitational waves” Class. Quant. Grav. 18 (2001) 3007
  56. S. Kessari, D. Singh, R. Tucker, C. Wang, “Scattering of Spinning Test Particles by Plane Gravitational and Electromagnetic Waves” Class. Quant. Grav. 19 (2002) 4943
  57. M. Elbistan, N. Dimakis, K. Andrzejewski, P. Horvathy, P. Kosiński, P.-M. Zhang, “Conformal symmetries and integrals of the motion in pp waves with external electromagnetic fields” Ann. Phys. 418 (2020) 168180
  58. F. Cianfrani, I. Milillo, G. Montani, “Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework” Phys. Lett. A 366 (2007) 7
  59. S. Hojman, “Lagrangian theory of the motion of spinning particles in torsion gravitational theories” Phys. Rev. D 18 (1978) 2741
  60. Z. Zhang, G. Fan, J. Jia, “Effect of Particle Spin on Trajectory Deflection and Gravitational Lensing” JCAP 09 (2022) 061

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube