Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Search for $CP$ violation in D$^0$ $\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$ decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2405.11606v2)

Published 19 May 2024 in hep-ex

Abstract: A search is reported for charge-parity $CP$ violation in D$0$ $\to$ K$0_\mathrm{S}$K$0_\mathrm{S}$ decays, using data collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb${-1}$, which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D${*+}$ $\to$ D$0\pi+$ and D${*-}$ $\to$ D$0\pi-$. The $CP$ asymmetry in D$0$ $\to$ K$0_\mathrm{S}$K$0_\mathrm{S}$ is measured to be $A_{CP}$(K$0_\mathrm{S}$K$0_\mathrm{S}$) = (6.2 $\pm$ 3.0 $\pm$ 0.2 $\pm$ 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the $CP$ asymmetry in the D$0$ $\to$ K$0_\mathrm{S}\pi+\pi-$ decay. This is the first $CP$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. D. Sakharov, “Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe”, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32, 10.1070/PU1991v034n05ABEH002497.
  2. N. Cabibbo et al., “Unitary symmetry and leptonic decays”, Phys. Rev. Lett. 10 (1963) 531, 10.1103/PhysRevLett.10.531.
  3. M. Kobayashi and T. Maskawa, “CP-violation in the renormalizable theory of weak interaction”, Prog. Theor. Phys. 49 (1973) 652, 10.1143/PTP.49.652.
  4. Particle Data Group, “Review of particle physics”, PTEP 2022 (2022) 083C01, 10.1093/ptep/ptac097.
  5. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Progress in electroweak baryogenesis”, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27, 10.1146/annurev.ns.43.120193.000331, arXiv:hep-ph/9302210.
  6. A. Riotto and M. Trodden, “Recent progress in baryogenesis”, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35, 10.1146/annurev.nucl.49.1.35, arXiv:hep-ph/9901362.
  7. W.-S. Hou, “Source of CP violation for the baryon asymmetry of the Universe”, Chin. J. Phys. 47 (2009) 134, arXiv:0803.1234.
  8. S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry”, Phys. Rev. D 2 (1970) 1285, 10.1103/PhysRevD.2.1285.
  9. LHCb Collaboration, “Observation of CP violation in charm decays”, Phys. Rev. Lett. 122 (2019) 211803, 10.1103/PhysRevLett.122.211803, arXiv:1903.08726.
  10. A. Lenz and G. Wilkinson, “Mixing and CP violation in the charm system”, Ann. Rev. Nucl. Part. Sci. 71 (2021) 59, 10.1146/annurev-nucl-102419-124613, arXiv:2011.04443.
  11. U. Nierste and S. Schacht, “C⁢P𝐶𝑃CPitalic_C italic_P violation in D0→KS⁢KS→superscript𝐷0subscript𝐾𝑆subscript𝐾𝑆{D}^{0}\to{K}_{S}{K}_{S}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_K start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT”, Phys. Rev. D 92 (2015) 054036, 10.1103/PhysRevD.92.054036, arXiv:1508.00074.
  12. H.-n. Li, C.-D. Lu, and F.-S. Yu, “Branching ratios and direct C⁢P𝐶𝑃CPitalic_C italic_P asymmetries in D→P⁢P→𝐷𝑃𝑃D\rightarrow PPitalic_D → italic_P italic_P decays”, Phys. Rev. D 86 (2012) 036012, 10.1103/PhysRevD.86.036012, arXiv:1203.3120.
  13. H.-Y. Cheng and C.-W. Chiang, “Revisiting C⁢P𝐶𝑃CPitalic_C italic_P violation in D→P⁢P→𝐷𝑃𝑃D\rightarrow PPitalic_D → italic_P italic_P and V⁢P𝑉𝑃VPitalic_V italic_P decays”, Phys. Rev. D 100 (2019) 093002, 10.1103/PhysRevD.100.093002, arXiv:1909.03063.
  14. F. Buccella, A. Paul, and P. Santorelli, “S⁢U⁢(3)F𝑆𝑈subscript3𝐹SU(3{)}_{F}italic_S italic_U ( 3 ) start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT breaking through final state interactions and C⁢P𝐶𝑃CPitalic_C italic_P asymmetries in D→P⁢P→𝐷𝑃𝑃D\rightarrow PPitalic_D → italic_P italic_P decays”, Phys. Rev. D 99 (2019) 113001, 10.1103/PhysRevD.99.113001, arXiv:1902.05564.
  15. J. Brod, A. L. Kagan, and J. Zupan, “Size of direct C⁢P𝐶𝑃CPitalic_C italic_P violation in singly Cabibbo-suppressed D𝐷Ditalic_D decays”, Phys. Rev. D 86 (2012) 014023, 10.1103/PhysRevD.86.014023, arXiv:1111.5000.
  16. LHCb Collaboration, “Measurement of C⁢P𝐶𝑃CPitalic_C italic_P asymmetry in D0→KS0⁢KS0→superscript𝐷0subscriptsuperscript𝐾0𝑆subscriptsuperscript𝐾0𝑆D^{0}\to K^{0}_{S}K^{0}_{S}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT decays”, Phys. Rev. D 104 (2021) L031102, 10.1103/PhysRevD.104.L031102, arXiv:2105.01565.
  17. Belle Collaboration, “Search for C⁢P𝐶𝑃CPitalic_C italic_P violation and measurement of the branching fraction in the decay D0→KS0⁢KS0→superscript𝐷0subscriptsuperscript𝐾0𝑆subscriptsuperscript𝐾0𝑆D^{0}\to K^{0}_{S}K^{0}_{S}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT”, Phys. Rev. Lett. 119 (2017) 171801, 10.1103/PhysRevLett.119.171801, arXiv:1705.05966.
  18. CDF Collaboration, “Measurement of CP-violation asymmetries in D0→KS0⁢π+⁢π−→superscript𝐷0subscriptsuperscript𝐾0𝑆superscript𝜋superscript𝜋D^{0}\to K^{0}_{S}\pi^{+}\pi^{-}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT”, Phys. Rev. D 86 (2012) 032007, 10.1103/PhysRevD.86.032007, arXiv:1207.0825.
  19. CMS Collaboration, “Test of lepton flavor universality in \PBpm→\PKpm⁢\PGmp⁢\PGmm→\PBpm\PKpm\PGmp\PGmm\PBpm\to\PKpm\PGmp\PGmm→ and \PBpm→\PKpm⁢\Pep⁢\Pem→\PBpm\PKpm\Pep\Pem\PBpm\to\PKpm\Pep\Pem→ decays in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2024. arXiv:2401.07090. Submitted to Phys. Rep.
  20. CMS Collaboration, “Enriching the physics program of the CMS experiment via data scouting and data parking”, 2024. arXiv:2403.16134. Submitted to Phys. Rep.
  21. CMS Tracker Group Collaboration, “The CMS Phase-1 pixel detector upgrade”, JINST 16 (2021) P02027, 10.1088/1748-0221/16/02/P02027, arXiv:2012.14304.
  22. CMS Collaboration, “Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector”, CMS Detector Performance Note CMS-DP-2020-049, 2020.
  23. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  24. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  25. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  26. T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  27. D. J. Lange, “The EvtGen particle decay simulation package”, Nucl. Instrum. Meth. A 462 (2001) 152, 10.1016/S0168-9002(01)00089-4.
  28. CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  29. E. Barberio and Z. Wa̧s, “PHOTOS — a universal Monte Carlo for QED radiative corrections: version 2.0”, Comput. Phys. Commun. 79 (1994) 291, 10.1016/0010-4655(94)90074-4.
  30. GEANT4 Collaboration, “\GEANTfour — a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  31. CMS Collaboration, “CMS tracking performance results from early LHC operation”, Eur. Phys. J. C 70 (2010) 1165, 10.1140/epjc/s10052-010-1491-3, arXiv:1007.1988.
  32. CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
  33. N. L. Johnson, “Systems of frequency curves generated by methods of translation”, Biometrika 36 (1949) 149, 10.2307/2332539.
  34. M. J. Oreglia, “A study of the reactions ψ′→γ⁢γ⁢ψ→superscript𝜓′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
  35. CLEO Collaboration, “Search for CP violation in \PDz→\PKzS⁢\PGpp⁢\PGpm→\PDz\PKzS\PGpp\PGpm\PDz\to\PKzS\PGpp\PGpm→”, Phys. Rev. D 70 (2004) 091101, 10.1103/PhysRevD.70.091101, arXiv:hep-ex/0311033.
  36. HEPData record for this analysis, 2024. 10.17182/hepdata.147012.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 25 likes.