Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Study of relativistic hot accretion flow around Kerr-like Wormhole (2405.11453v1)

Published 19 May 2024 in astro-ph.HE and gr-qc

Abstract: We investigate the structure of relativistic, low-angular momentum, inviscid advective accretion flow in a stationary axisymmetric Kerr-like wormhole (WH) spacetime, characterized by the spin parameter ($a_{\rm k}$), the dimensionless parameter ($\beta$), and the source mass ($M_{\rm WH}$). In doing so, we self-consistently solve the set of governing equations describing the relativistic accretion flow around a Kerr-like WH in the steady state, and for the first time, we obtain all possible classes of global accretion solutions for transonic as well as subsonic flows. We study the properties of dynamical and thermodynamical flow variables and examine how the nature of the accretion solutions alters due to the change of the model parameters, namely energy ($\mathcal{E}$), angular momentum ($\lambda$), $a_{\rm k}$, and $\beta$. Further, we separate the parameter space in $\lambda-\mathcal{E}$ plane according to the nature of the flow solutions, and study the modification of the parameter space by varying $a_{\rm k}$ and $\beta$. Moreover, we retrace the parameter space in $a_{\rm k}-\beta$ plane that allows accretion solutions containing multiple critical points. Finally, we calculate the disc luminosity ($L$) considering free-free emissions for transonic solutions as these solutions are astrophysically relevant and discuss the implication of this model formalism in the context of astrophysical applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. Accretion Power in Astrophysics: Third Edition. Cambridge, UK: Cambridge University Press, 2002.
  2. H. J. Smith. Light variations of quasi-stellar sources. Transactions of the International Astronomical Union, Series B, 12B:576, January 1966.
  3. Martin Elvis. A Structure for Quasars. The Astrophysical Journal, 545(1):63–76, December 2000. doi: 10.1086/317778.
  4. Bradley M. Peterson. An Introduction to Active Galactic Nuclei. Cambridge, New York Cambridge University Press, 1997.
  5. Andrew C. Fabian. Active galactic nuclei. Proceedings of the National Academy of Sciences, 96(9):4749–4751, 1999. ISSN 0027-8424. doi: 10.1073/pnas.96.9.4749. URL https://www.pnas.org/content/96/9/4749.
  6. Black Holes and X-ray Binaries. PASA, 2(4):190–191, October 1973. doi: 10.1017/S1323358000013503.
  7. Accretion Disc Models for Compact X-Ray Sources. A&A, 21:1, October 1972.
  8. Black holes in binary systems. Observational appearance. 24:337–355, January 1973.
  9. Astrophysics of black holes. In Black Holes (Les Astres Occlus), pages 343–450, January 1973.
  10. First m87 event horizon telescope results. iv. imaging the central supermassive black hole. The Astrophysical Journal Letters, 875(1):L4, 2019a.
  11. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019b. doi: 10.3847/2041-8213/ab0ec7.
  12. The Event Horizon Telescope Collaboration. First sagittarius a* event horizon telescope results. i. the shadow of the supermassive black hole in the center of the milky way. The Astrophysical Journal Letters, 930(L12), 2022a. URL https://doi.org/10.3847/2041-8213/ac6674.
  13. The Event Horizon Telescope Collaboration. First sagittarius a* event horizon telescope results. vi. testing the black hole metric. The Astrophysical Journal Letters, 930(L17), 2022b. URL https://doi.org/10.3847/2041-8213/ac6756.
  14. Thin accretion disks in f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) modified gravity models. Phys. Rev. D, 78:024043, Jul 2008. doi: 10.1103/PhysRevD.78.024043. URL https://link.aps.org/doi/10.1103/PhysRevD.78.024043.
  15. Malihe Heydari-Fard. Black hole accretion disks in brane gravity via a confining potential. Classical and Quantum Gravity, 27(23):235004, nov 2010. doi: 10.1088/0264-9381/27/23/235004. URL https://doi.org/10.1088/0264-9381/27/23/235004.
  16. Thin accretion disk signatures in dynamical Chern-Simons-modified gravity. Classical and Quantum Gravity, 27(10):105010, May 2010. doi: 10.1088/0264-9381/27/10/105010.
  17. Solutions to hořava gravity. Physical Review Letters, 103(9):091301, 2009.
  18. Diego F. Torres. Accretion disc onto a static non-baryonic compact object. Nuclear Physics B, 626(1):377–394, 2002. ISSN 0550-3213. doi: https://doi.org/10.1016/S0550-3213(02)00038-X. URL https://www.sciencedirect.com/science/article/pii/S055032130200038X.
  19. F. Siddhartha Guzmán. Accretion disk onto boson stars: A way to supplant black hole candidates. Phys. Rev. D, 73(2):021501, January 2006. doi: 10.1103/PhysRevD.73.021501.
  20. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D, 79:064001, Mar 2009. doi: 10.1103/PhysRevD.79.064001. URL https://link.aps.org/doi/10.1103/PhysRevD.79.064001.
  21. Can accretion disk properties distinguish gravastars from black holes? Classical and Quantum Gravity, 26(21):215006, nov 2009. doi: 10.1088/0264-9381/26/21/215006.
  22. Can stellar mass black holes be quark stars? Monthly Notices of the Royal Astronomical Society, 400(3):1632–1642, 12 2009. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2009.15571.x. URL https://doi.org/10.1111/j.1365-2966.2009.15571.x.
  23. Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk. ApJ, 191:499–506, July 1974. doi: 10.1086/152990.
  24. Kip S. Thorne. Disk-Accretion onto a Black Hole. II. Evolution of the Hole. ApJ, 191:507–520, July 1974. doi: 10.1086/152991.
  25. Study of relativistic accretion flow in kerr-taub-nut spacetime. Phys. Rev. D, 102:023012, Jul 2020. doi: 10.1103/PhysRevD.102.023012. URL https://link.aps.org/doi/10.1103/PhysRevD.102.023012.
  26. Study of relativistic accretion flow around KTN black hole with shocks. J. Cosmology Astropart. Phys, 2022(8):048, August 2022. doi: 10.1088/1475-7516/2022/08/048.
  27. Echoes of Kerr-like wormholes. Phys. Rev. D, 97(2):024040, January 2018. doi: 10.1103/PhysRevD.97.024040.
  28. A. Einstein and N. Rosen. The particle problem in the general theory of relativity. Phys. Rev., 48:73–77, Jul 1935. doi: 10.1103/PhysRev.48.73. URL https://link.aps.org/doi/10.1103/PhysRev.48.73.
  29. John Archibald Wheeler. Geons. Physical Review, 97(2):511, 1955.
  30. Causality and multiply connected space-time. Phys. Rev., 128:919–929, Oct 1962. doi: 10.1103/PhysRev.128.919. URL https://link.aps.org/doi/10.1103/PhysRev.128.919.
  31. Homer G. Ellis. Ether flow through a drainhole: A particle model in general relativity. Journal of Mathematical Physics, 14(1):104–118, January 1973. doi: 10.1063/1.1666161.
  32. K. A. Bronnikov. Scalar-tensor theory and scalar charge. Acta Phys. Polon. B, 4:251–266, 1973.
  33. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 56(5):395–412, May 1988. doi: 10.1119/1.15620.
  34. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett., 61:1446–1449, Sep 1988. doi: 10.1103/PhysRevLett.61.1446. URL https://link.aps.org/doi/10.1103/PhysRevLett.61.1446.
  35. Traversable wormholes with arbitrarily small energy condition violations. Physical review letters, 90(20):201102, 2003.
  36. Quantifying energy condition violations in traversable wormholes. Pramana, 63(4):859–864, 2004.
  37. Francisco S. N. Lobo. Exotic solutions in General Relativity: Traversable wormholes and ’warp drive’ spacetimes. arXiv e-prints, art. arXiv:0710.4474, October 2007.
  38. Matt Visser. Traversable wormholes: Some simple examples. Phys. Rev. D, 39:3182–3184, May 1989. doi: 10.1103/PhysRevD.39.3182. URL https://link.aps.org/doi/10.1103/PhysRevD.39.3182.
  39. Evolving lorentzian wormholes supported by phantom matter and cosmological constant. Phys. Rev. D, 79:024005, Jan 2009. doi: 10.1103/PhysRevD.79.024005. URL https://link.aps.org/doi/10.1103/PhysRevD.79.024005.
  40. Morris-thorne wormholes with a cosmological constant. Phys. Rev. D, 68:064004, Sep 2003. doi: 10.1103/PhysRevD.68.064004. URL https://link.aps.org/doi/10.1103/PhysRevD.68.064004.
  41. Wormhole with varying cosmological constant. General Relativity and Gravitation, 39(2):145–151, February 2007. doi: 10.1007/s10714-006-0380-4.
  42. Francisco S. N. Lobo. Stability of phantom wormholes. Phys. Rev. D, 71:124022, Jun 2005. doi: 10.1103/PhysRevD.71.124022. URL https://link.aps.org/doi/10.1103/PhysRevD.71.124022.
  43. Modified-gravity wormholes without exotic matter. Physical Review D, 87(6):067504, 2013.
  44. Nadiezhda Montelongo Garcia and Francisco S N Lobo. Nonminimal curvature–matter coupled wormholes with matter satisfying the null energy condition. Classical and Quantum Gravity, 28(8):085018, mar 2011. doi: 10.1088/0264-9381/28/8/085018. URL https://doi.org/10.1088/0264-9381/28/8/085018.
  45. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. 91(8):084004, April 2015. doi: 10.1103/PhysRevD.91.084004.
  46. Rajibul Shaikh. Wormholes with nonexotic matter in born-infeld gravity. Phys. Rev. D, 98:064033, Sep 2018. doi: 10.1103/PhysRevD.98.064033. URL https://link.aps.org/doi/10.1103/PhysRevD.98.064033.
  47. Einstein-cartan wormhole solutions. Phys. Rev. D, 95:064049, Mar 2017. doi: 10.1103/PhysRevD.95.064049. URL https://link.aps.org/doi/10.1103/PhysRevD.95.064049.
  48. Testing the nature of dark compact objects: a status report. Living Reviews in Relativity, 22(1):4, July 2019. doi: 10.1007/s41114-019-0020-4.
  49. R. A. Konoplya and A. Zhidenko. Wormholes versus black holes: quasinormal ringing at early and late times. 2016(12):043, December 2016. doi: 10.1088/1475-7516/2016/12/043.
  50. Gravitational lensing by scalar-tensor wormholes and the energy conditions. Phys. Rev. D, 96:044037, Aug 2017. doi: 10.1103/PhysRevD.96.044037. URL https://link.aps.org/doi/10.1103/PhysRevD.96.044037.
  51. Shadow images of Kerr-like wormholes. Classical and Quantum Gravity, 36(21):215007, November 2019. doi: 10.1088/1361-6382/ab42be.
  52. Accretion disk around the rotating Damour-Solodukhin wormhole. European Physical Journal C, 79(11):952, November 2019. doi: 10.1140/epjc/s10052-019-7488-7.
  53. Throat effects on shadows of kerr-like wormholes. Phys. Rev. D, 103:104050, May 2021. doi: 10.1103/PhysRevD.103.104050. URL https://link.aps.org/doi/10.1103/PhysRevD.103.104050.
  54. Epicyclic Oscillations around Simpson-Visser Regular Black Holes and Wormholes. Universe, 7(8):279, August 2021. doi: 10.3390/universe7080279.
  55. Constraining wormhole geometries using the orbit of S2 star and the Event Horizon Telescope. European Physical Journal C, 82(7):633, July 2022. doi: 10.1140/epjc/s10052-022-10603-7.
  56. Static axionlike dark matter clouds around magnetized rotating wormholes-probe limit case. European Physical Journal C, 82(7):586, July 2022. doi: 10.1140/epjc/s10052-022-10545-0.
  57. Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics, 8(2):265–281, February 1967. doi: 10.1063/1.1705193.
  58. J. F. Lu. Non-uniqueness of transonic solution for accretion onto a Schwarzschild black hole. A&A, 148:176–178, July 1985.
  59. Limitations of the pseudo-newtonian approach in studying the accretion flow around a kerr black hole. Phys. Rev. D, 98:083004, Oct 2018. doi: 10.1103/PhysRevD.98.083004. URL https://link.aps.org/doi/10.1103/PhysRevD.98.083004.
  60. H. Riffert and H. Herold. Relativistic Accretion Disk Structure Revisited. The Astrophysical Journal, 450:508, September 1995. doi: 10.1086/176161.
  61. Viscous accretion discs around rotating black holes. Monthly Notices of the Royal Astronomical Society, 286(3):681–695, 04 1997. ISSN 0035-8711. doi: 10.1093/mnras/286.3.681. URL https://doi.org/10.1093/mnras/286.3.681.
  62. EFFECTS OF FLUID COMPOSITION ON SPHERICAL FLOWS AROUND BLACK HOLES. The Astrophysical Journal, 694(1):492–501, mar 2009. doi: 10.1088/0004-637x/694/1/492. URL https://doi.org/10.1088/0004-637x/694/1/492.
  63. Low angular momentum relativistic hot accretion flow around Kerr black holes with variable adiabatic index. MNRAS, 484(3):3209–3218, April 2019. doi: 10.1093/mnras/stz168.
  64. Sonic point instability in disc accretion and types of stress tensor. MNRAS, 260(2):317–322, January 1993. doi: 10.1093/mnras/260.2.317.
  65. Advection-dominated Accretion: Self-Similarity and Bipolar Outflows. ApJ, 444:231, May 1995. doi: 10.1086/175599.
  66. Dissipative accretion flows around a rotating black hole. MNRAS, 389(1):371–378, September 2008. doi: 10.1111/j.1365-2966.2008.13564.x.
  67. Dynamical structure of magnetized dissipative accretion flow around black holes. MNRAS, 461(1):190–201, September 2016. doi: 10.1093/mnras/stw1327.
  68. A possible model for the long-term flares of Sgr A*. PASJ, 71(3):49, June 2019. doi: 10.1093/pasj/psz021.
  69. Mario Vietri. Foundations of high-energy astrophysics. University of Chicago Press, 2008.
  70. W. J. Karzas and R. Latter. Electron Radiative Transitions in a Coulomb Field. Astrophysical Journal Supplement, 6:167, May 1961. doi: 10.1086/190063.
  71. Radiatively driven plasma jets around compact objects. Monthly Notices of the Royal Astronomical Society, 333(2):454–462, 06 2002. ISSN 0035-8711. doi: 10.1046/j.1365-8711.2002.05424.x. URL https://doi.org/10.1046/j.1365-8711.2002.05424.x.
  72. J. P. Luminet. Image of a spherical black hole with thin accretion disk. The Astronomy and Astrophysics, 75:228–235, May 1979.
  73. The nature of the hard state of Cygnus X-3. MNRAS, 384(1):278–290, February 2008. doi: 10.1111/j.1365-2966.2007.12688.x.
  74. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries? A&A, 612:A27, April 2018. doi: 10.1051/0004-6361/201732284.
  75. Cygnus X-3: Its Little Friend’s Counterpart, the Distance to Cygnus X-3, and Outflows/Jets. ApJ, 830(2):L36, October 2016. doi: 10.3847/2041-8205/830/2/L36.
  76. Energy-dependent orbital modulation of X-rays and constraints on emission of the jet in Cyg X-3. Mon. Not. Roy. Astron. Soc., 426:1031, 2012. doi: 10.1111/j.1365-2966.2012.21635.x.
  77. Cyg X-3: a low-mass black hole or a neutron star. MNRAS, 429:L104–L108, February 2013. doi: 10.1093/mnrasl/sls035.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube