Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Run-away transition to turbulent strong-field dynamo (2405.10981v2)

Published 14 May 2024 in physics.flu-dyn, astro-ph.EP, and astro-ph.SR

Abstract: Planets and stars are able to generate coherent large-scale magnetic fields by helical convective motions in their interiors. This process, known as hydromagnetic dynamo, involves nonlinear interaction between the flow and magnetic field. Nonlinearity facilitates existence of bi-stable dynamo branches: a weak field branch where the magnetic field is not strong enough to enter into the leading order force balance in the momentum equation at large flow scales, and a strong field branch where the field enters into this balance. The transition between the two with enhancement of convection can be either subcritical or supercritical, depending on the strength of magnetic induction. In both cases, it is accompanied by topological changes in velocity field across the system; however, it is yet unclear how these changes are produced. In this work, we analyse transitions between the weak and strong dynamo regimes using a data-driven approach, separating different physical effects induced by dynamically active flow scales. Using Dynamic Mode Decomposition, we decompose the dynamo data from direct numerical simulations into different components (modes), identify the ones relevant for transition, and estimate relative magnitudes of their contributions Lorentz force and induction term. Our results suggest that subcritical transition to a strong dynamo is facilitated by a subharmonic instability, allowing for a more efficient mode of convection, and provide a modal basis for reduced-order models of this transition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. N. Schaeffer, D. Jault, H.-C. Nataf, and A. Fournier, “Turbulent geodynamo simulations: a leap towards earth’s core,” Geophysical Journal International, vol. 211, no. 1, pp. 1–29, 2017.
  2. N. Gillet, D. Jault, E. Canet, and A. Fournier, “Fast torsional waves and strong magnetic field within the earth’s core,” Nature, vol. 465, no. 7294, pp. 74–77, 2010.
  3. C. C. Finlay, N. Gillet, J. Aubert, P. W. Livermore, and D. Jault, “Gyres, jets and waves in the earth’s core,” Nature Reviews Earth & Environment, vol. 4, no. 6, pp. 377–392, 2023.
  4. K. Hori, C. A. Jones, A. Antuñano, L. N. Fletcher, and S. M. Tobias, “Jupiter’s cloud-level variability triggered by torsional oscillations in the interior,” Nature Astronomy, vol. 7, no. 7, pp. 825–835, 2023.
  5. M. Dumberry and J. Bloxham, “Torque balance, taylor’s constraint and torsional oscillations in a numerical model of the geodynamo,” Physics of the Earth and Planetary Interiors, vol. 140, no. 1-3, pp. 29–51, 2003.
  6. J. Taylor, “The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 274, no. 1357, pp. 274–283, 1963.
  7. D. Fearn and M. Rahman, “Evolution of non-linear α𝛼\alphaitalic_α 2-dynamos and taylor’s constraint,” Geophysical & Astrophysical Fluid Dynamics, vol. 98, no. 5, pp. 385–406, 2004.
  8. K. Li, A. Jackson, and P. W. Livermore, “Taylor state dynamos found by optimal control: axisymmetric examples,” Journal of Fluid Mechanics, vol. 853, pp. 647–697, 2018.
  9. G. A. Glatzmaiers and P. H. Roberts, “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal,” Nature, vol. 377, no. 6546, pp. 203–209, 1995.
  10. C. Jones, “A dynamo model of jupiter’s magnetic field,” Icarus, vol. 241, pp. 148–159, 2014.
  11. T. Gastine, J. Wicht, L. Duarte, M. Heimpel, and A. Becker, “Explaining jupiter’s magnetic field and equatorial jet dynamics,” Geophys. Res. Lett., vol. 41, no. 15, pp. 5410–5419, 2014.
  12. J. Aubert, “Approaching earth’s core conditions in high-resolution geodynamo simulations,” Geophysical Journal International, vol. 219, no. Supplement_1, pp. S137–S151, 2019.
  13. P. Davidson, “Scaling laws for planetary dynamos,” Geophysical Journal International, vol. 195, no. 1, pp. 67–74, 2013.
  14. J. Aubert, T. Gastine, and A. Fournier, “Spherical convective dynamos in the rapidly rotating asymptotic regime,” Journal of Fluid Mechanics, vol. 813, pp. 558–593, 2017.
  15. R. K. Yadav, T. Gastine, U. R. Christensen, S. J. Wolk, and K. Poppenhaeger, “Approaching a realistic force balance in geodynamo simulations,” Proceedings of the National Academy of Sciences, vol. 113, no. 43, pp. 12 065–12 070, 2016.
  16. R. J. Teed and E. Dormy, “Solenoidal force balances in numerical dynamos,” Journal of Fluid Mechanics, vol. 964, p. A26, 2023.
  17. R. Hollerbach, “On the theory of the geodynamo,” Physics of the Earth and Planetary interiors, vol. 98, no. 3-4, pp. 163–185, 1996.
  18. E. Dormy, “Strong-field spherical dynamos,” J. Fluid Mech, vol. 789, pp. 500–513, 2016.
  19. L. Petitdemange, “Systematic parameter study of dynamo bifurcations in geodynamo simulations,” Phys. Earth Planet. In., vol. 277, pp. 113–132, 2018.
  20. U. R. Christensen and J. Aubert, “Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields,” Geophysical Journal International, vol. 166, no. 1, pp. 97–114, 2006.
  21. M. D. Menu, L. Petitdemange, and S. Galtier, “Magnetic effects on fields morphologies and reversals in geodynamo simulations,” Phys. Earth Planet. In., vol. 307, p. 106542, 2020.
  22. K. Hori and J. Wicht, “Subcritical dynamos in the early mars’ core: Implications for cessation of the past martian dynamo,” Physics of the Earth and Planetary Interiors, vol. 219, pp. 21–33, 2013.
  23. P. J. Schmid, “Dynamic mode decomposition and its variants,” Annu. Rev. Fluid Mech., vol. 54, pp. 225–254, 2022.
  24. A. Guseva, “Data-driven scale identification in oscillatory dynamos,” Monthly Notices of the Royal Astronomical Society, vol. 528, no. 2, pp. 1685–1696, 2024.
  25. A. Guseva and S. M. Tobias, “Transition to chaos and modal structure of magnetized taylor–couette flow,” Philosophical Transactions of the Royal Society A, vol. 381, no. 2243, p. 20220120, 2023.
  26. E. Dormy, P. Cardin, and D. Jault, “Mhd flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field,” Earth and Planetary Science Letters, vol. 160, no. 1-2, pp. 15–30, 1998.
  27. B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.
  28. J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On dynamic mode decomposition: Theory and applications,” Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.
  29. H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4, pp. 2096–2126, 2017.
  30. P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.
  31. M. R. Jovanović, P. J. Schmid, and J. W. Nichols, “Sparsity-promoting dynamic mode decomposition,” Physics of Fluids, vol. 26, no. 2, p. 024103, 2014.
  32. M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt, and U. R. Christensen, “Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo,” Geophysical & Astro Fluid Dynamics, vol. 101, no. 2, pp. 81–116, 2007.
  33. M. Schrinner, L. Petitdemange, and E. Dormy, “Dipole collapse and dynamo waves in global direct numerical simulations,” Astrophys. J., vol. 752, no. 2, p. 121, 2012.
  34. S. J. Mason, C. Guervilly, and G. R. Sarson, “Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field,” Geophysical & Astrophysical Fluid Dynamics, vol. 116, no. 5-6, pp. 458–498, 2022.
  35. P. M. Mannix, Y. Ponty, and F. Marcotte, “Systematic route to subcritical dynamo branches,” Physical Review Letters, vol. 129, no. 2, p. 024502, 2022.
  36. A. Guseva, R. Hollerbach, A. P. Willis, and M. Avila, “Azimuthal magnetorotational instability at low and high magnetic prandtl numbers,” Magnetohydrodynamics, vol. 53, no. 1, pp. 25–34, 2017.
  37. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” P. Natl. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937, 2016.
  38. B. R. Noack and H. Eckelmann, “A low-dimensional galerkin method for the three-dimensional flow around a circular cylinder,” Physics of Fluids, vol. 6, no. 1, pp. 124–143, 1994.
  39. A. Guseva, “Supplementary materials for the manuscript "Run- away transition to turbulent strong-field dynamo",” May 2024. [Online]. Available: https://doi.org/10.5281/zenodo.11164961

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.