Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Gravitational waves from low-scale cosmic strings (2405.10937v2)

Published 17 May 2024 in astro-ph.CO, gr-qc, and hep-ph

Abstract: Cosmic strings are a common prediction in many grand unified theories and a promising source of stochastic gravitational waves (GWs) from the early Universe. In this paper, we point out that the GW signal from cosmic strings produced at a comparatively low energy scale, $v \lesssim 109 \textrm{GeV}$, exhibits several novel features that are not present in the case of high-scale cosmic strings. Our findings notably include (i) a sharp cutoff frequency $f_{\rm cut}$ in the GW spectrum from the fundamental oscillation mode on closed string loops and (ii) an oscillating pattern in the total GW spectrum from all oscillation modes whose local minima are located at integer multiples of $f_{\rm cut}$. These features reflect the fact that string loops produced in the early Universe fail to shrink to zero size because of GW emission within the age of the Universe, if their tension is low enough. In addition, they offer an exciting opportunity to directly probe the discrete spectrum of oscillation modes on closed string loops in GW observations. For strings produced at a scale $v \sim 109\textrm{GeV}$, the novel features in the GW spectrum are within the sensitivity reach of future experiments such as BBO and DECIGO.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Vilenkin, Phys. Rept. 121, 263 (1985).
  2. M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58, 477 (1995), arXiv:hep-ph/9411342 .
  3. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press).
  4. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
  5. T. W. B. Kibble, Phys. Rept. 67, 183 (1980).
  6. W. H. Zurek, Nature 317, 505 (1985).
  7. E. B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976).
  8. A. Vilenkin, Phys. Lett. B 107, 47 (1981).
  9. T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052 (1985).
  10. T. Damour and A. Vilenkin, Phys. Rev. D 71, 063510 (2005), arXiv:hep-th/0410222 .
  11. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 97, 102002 (2018), arXiv:1712.01168 [gr-qc] .
  12. P. Auclair et al., JCAP 04, 034 (2020a), arXiv:1909.00819 [astro-ph.CO] .
  13. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  14. J. Antoniadis et al. (EPTA, InPTA), Astron. Astrophys. 678, A50 (2023a), arXiv:2306.16214 [astro-ph.HE] .
  15. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  16. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  17. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 952, L37 (2023b), arXiv:2306.16220 [astro-ph.HE] .
  18. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  19. J. Antoniadis et al. (EPTA),   (2023b), arXiv:2306.16227 [astro-ph.CO] .
  20. J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO] .
  21. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  22. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  23. J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  24. J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 96, 104046 (2017), arXiv:1709.02693 [astro-ph.CO] .
  25. J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 101, 103018 (2020), arXiv:1912.10017 [astro-ph.CO] .
  26. V. Corbin and N. J. Cornish, Class. Quant. Grav. 23, 2435 (2006), arXiv:gr-qc/0512039 .
  27. T. Damour and A. Vilenkin, Phys. Rev. D 64, 064008 (2001), arXiv:gr-qc/0104026 .
  28. C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 54, 2535 (1996), arXiv:hep-ph/9602271 .
  29. C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 65, 043514 (2002), arXiv:hep-ph/0003298 .
  30. L. Sousa and P. P. Avelino, Phys. Rev. D 88, 023516 (2013), arXiv:1304.2445 [astro-ph.CO] .
  31. K. Schmitz and T. Schröder,  (2024a), in preparation.
  32. S. Mukovnikov and L. Sousa,   (2024), arXiv:2404.13213 [astro-ph.CO] .
  33. G. Servant and P. Simakachorn,   (2023), arXiv:2312.09281 [hep-ph] .
  34. A. E. Everett, Phys. Rev. D 24, 858 (1981).
  35. P. de Sousa Gerbert and R. Jackiw, Commun. Math. Phys. 124, 229 (1989).
  36. M. G. Alford and F. Wilczek, Phys. Rev. Lett. 62, 1071 (1989).
  37. J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 59, 063508 (1999), [Erratum: Phys.Rev.D 103, 029902 (2021)], arXiv:gr-qc/9810005 .
  38. K. D. Olum and J. J. Blanco-Pillado, Phys. Rev. D 60, 023503 (1999), arXiv:gr-qc/9812040 .
  39. C. Ringeval and T. Suyama, JCAP 12, 027 (2017), arXiv:1709.03845 [astro-ph.CO] .
  40. M. Maggiore, Phys. Rept. 331, 283 (2000), arXiv:gr-qc/9909001 .
  41. C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  42. K. Schmitz, JHEP 01, 097 (2021), arXiv:2002.04615 [hep-ph] .
  43. K. Schmitz and T. Schröder,  (2024b), in preparation.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 3 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube