A minimal scenario for the origin of non-equilibrium order (2405.10911v3)
Abstract: Life uses non-equilibrium mechanisms to create ordered structures not attainable at equilibrium; the resulting order is assumed to provide functional benefits that outweigh costs of time and energy needed by these mechanisms. Here, we show that models of DNA replication and self-assembly, when expanded to include known stalling effects, can evolve error correcting mechanisms like kinetic proofreading and dynamic instability through selection for fast replication alone. We abstract these results into a general framework that predicts a counterintuitive ''order through speed'' effect if the distribution of replication times is wide enough. We test our results against recent mutational screens of proofreading polymerases. Our work suggests the intriguing possibility that non-equilibrium order can evolve even before that order is directly functional, with consequences for the evolution of mutation rates, viral capsid assembly, and the origin of life.
- E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Canto (Cambridge University Press, Cambridge, 1944).
- Y. Tu, Proceedings of the National Academy of Sciences 105, 11737 (2008).
- P. Mehta and D. J. Schwab, Proceedings of the National Academy of Sciences 109, 17978 (2012).
- M. E. Raichle and D. A. Gusnard, Proceedings of the National Academy of Sciences 99, 10237 (2002).
- J. V. Neumann and A. W. Burks, Theory of Self-Reproducing Automata (University of Illinois Press, USA, 1966).
- J. Ninio, Biochimie 57, 587 (1975a).
- J. J. Hopfield, Proceedings of the National Academy of Sciences 71, 4135 (1974a).
- H. Qian, J. Phys. Chem. B (2006).
- M. Ehrenberg and C. Blomberg, Biophys. J. 31, 333 (1980).
- J. M. Horowitz and J. L. England, Proceedings of the National Academy of Sciences 114, 7565 (2017).
- M. Nguyen and S. Vaikuntanathan, Proceedings of the National Academy of Sciences 113, 14231 (2016).
- G. Bisker and J. L. England, Proceedings of the National Academy of Sciences 115, E10531 (2018).
- R. Marsland and J. L. England, Physical Review E 98, 022411 (2018).
- T. Mitchison and M. Kirschner, Nature 312, 237 (1984a).
- G. F. Joyce and J. W. Szostak, Cold Spring Harbor Perspectives in Biology 10, a034801 (2018).
- L. A. Loeb and T. A. Kunkel, Annual Review of Biochemistry 51, 429 (1982).
- J. J. Hopfield, Proceedings of the National Academy of Sciences 71, 4135 (1974b).
- J. Ninio, Biochimie 57, 587 (1975b).
- P. Sartori and S. Pigolotti, Physical Review Letters 110, 188101 (2013).
- F. W. Perrino and L. A. Loeb, Journal of Biological Chemistry 264, 2898 (1989).
- S. J. Johnson and L. S. Beese, Cell 116, 803 (2004).
- A. A. Johnson and K. A. Johnson, Journal of Biological Chemistry 276, 38097 (2001).
- C. G. Evans and E. Winfree, in DNA Computing and Molecular Programming, Vol. 11145, edited by D. Doty and H. Dietz (Springer International Publishing, Cham, 2018) pp. 37–54.
- T. Mitchison and M. Kirschner, Nature 312, 237 (1984b).
- E. Winfree and R. Bekbolatov, in DNA Computing, Lecture Notes in Computer Science, edited by J. Chen and J. Reif (Springer, Berlin, Heidelberg, 2004) pp. 126–144.
- A. Jhaveri, S. Loggia, Y. Qian, and M. E. Johnson, “Discovering optimal kinetic pathways for self-assembly using automatic differentiation,” (2023).
- T. E. Holy and S. Leibler, Proceedings of the National Academy of Sciences 91, 5682 (1994).
- J. D. Perlmutter and M. F. Hagan, Annual Review of Physical Chemistry 66, 217 (2015).
- R. Phillips, The Molecular Switch: Signalling and Allostery (Princeton University Press, 2020).
- M. R. Evans and S. N. Majumdar, Physical Review Letters 106, 160601 (2011).
- I. Eliazar and S. Reuveni, J. Phys. A: Math. Theor. 56, 024002 (2023).
- J. Lin and A. Amir, Cell systems 5, 358 (2017).
- M. Lynch, Proceedings of the National Academy of Sciences 104, 8597 (2007).
- D. J. Jenkins and D. J. Stekel, Journal of Molecular Evolution 71, 128 (2010).
- P. E. Boehmer and I. R. Lehman, Annu. Rev. Biochem. 66, 347 (1997).
- S. Klinge and J. L. Woolford, Nature Reviews Molecular Cell Biology 20, 116 (2019).
- M. Scott and T. Hwa, Nat. Rev. Microbiol. 21, 327 (2023).
- C. A. P. Joazeiro, Nat. Rev. Mol. Cell Biol. 20, 368 (2019).
- D. S. Tawfik, Current Opinion in Chemical Biology In vivo chemistry • Mechanisms, 21, 73 (2014).
- M. Lynch, Trends in Genetics 26, 345 (2010).
- M. Lenz and T. A. Witten, Nature Physics 13, 1100 (2017).
- G. Müller, Cryst. Res. Technol. 42, 1150 (2007).
- C. H. Waddington, Nature 150, 563 (1942).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.