Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Inverse Design for Waveguide Dispersion with a Differentiable Mode Solver (2405.10901v1)

Published 17 May 2024 in physics.optics and physics.comp-ph

Abstract: Inverse design of optical components based on adjoint sensitivity analysis has the potential to address the most challenging photonic engineering problems. However existing inverse design tools based on finite-difference-time-domain (FDTD) models are poorly suited for optimizing waveguide modes for adiabatic transformation or perturbative coupling, which lies at the heart of many important photonic devices. Among these, dispersion engineering of optical waveguides is especially challenging in ultrafast and nonlinear optical applications involving broad optical bandwidths and frequency-dependent anisotropic dielectric material response. In this work we develop gradient back-propagation through a general purpose electromagnetic eigenmode solver and use it to demonstrate waveguide dispersion optimization for second harmonic generation with maximized phase-matching bandwidth. This optimization of three design parameters converges in eight steps, reducing the computational cost of optimization by ~100x compared to exhaustive search and identifies new designs for broadband optical frequency doubling of laser sources in the 1.3-1.4 micron wavelength range.Furthermore we demonstrate that the computational cost of gradient back-propagation is independent of the number of parameters, as required for optimization of complex geometries. This technique enables practical inverse design for a broad range of previously intractable photonic devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. S. Molesky, Z. Lin, A. Y. Piggott, et al., “Inverse design in nanophotonics,” \JournalTitleNature Photonics 12, 659–670 (2018).
  2. A. F. Oskooi, D. Roundy, M. Ibanescu, et al., “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” \JournalTitleComputer Physics Communications 181, 687–702 (2010).
  3. A. M. Hammond, A. F. Oskooi, M. Chen, et al., “High-performance hybrid time/frequency-domain topology optimization for large-scale photonics inverse design,” \JournalTitleOptics Express 30, 4467–4491 (2022).
  4. A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” \JournalTitleScientific reports 7, 1786 (2017).
  5. A. Y. Piggott, J. Lu, K. G. Lagoudakis, et al., “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” \JournalTitleNature Photonics 9, 374–377 (2015).
  6. A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” \JournalTitleOptics express 26, 4766–4779 (2018).
  7. H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” \JournalTitleOptics Express 28, 6945–6965 (2020).
  8. R. E. Christiansen, J. Michon, M. Benzaouia, et al., “Inverse design of nanoparticles for enhanced raman scattering,” \JournalTitleOptics Express 28, 4444–4462 (2020).
  9. M. Jankowski, C. Langrock, B. Desiatov, et al., “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” \JournalTitleOptica 7, 40–46 (2020).
  10. Z. Jia, W. Qarony, J. Park, et al., “Interpretable inverse-designed cavity for on-chip nonlinear photon pair generation,” \JournalTitleOptica 10, 1529–1534 (2023).
  11. L. Ledezma, R. Sekine, Q. Guo, et al., “Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides,” \JournalTitleOptica 9, 303–308 (2022).
  12. W. Ma, Z. Liu, Z. A. Kudyshev, et al., “Deep learning for the design of photonic structures,” \JournalTitleNature Photonics 15, 77–90 (2021).
  13. G. Alagappan and C. Png, “Group refractive index via auto-differentiation and neural networks,” \JournalTitleScientific Reports 13, 4450 (2023).
  14. D. D. El-Mosalmy, M. Hameed, N. F. Areed, and S. Obayya, “Novel neural network based optimization approach for photonic devices,” \JournalTitleOptical and Quantum Electronics 46, 439–453 (2014).
  15. G. N. Malheiros-Silveira and H. E. Hernandez-Figueroa, “Prediction of dispersion relation and pbgs in 2-d pcs by using artificial neural networks,” \JournalTitleIEEE Photonics Technology Letters 24, 1799–1801 (2012).
  16. F. R. Talenti, S. Wabnitz, I. Ghorbel, et al., “Fast dispersion tailoring of multimode photonic crystal resonators,” \JournalTitlePhysical Review A 106, 023505 (2022).
  17. M. Minkov, I. A. Williamson, L. C. Andreani, et al., “Inverse design of photonic crystals through automatic differentiation,” \JournalTitleAcs Photonics 7, 1729–1741 (2020).
  18. I. Nasidi, R. Hao, S. Jin, and E. Li, “Inverse design of a photonic moiré lattice waveguide towards improved slow light performances,” \JournalTitleApplied Optics 62, 2651–2655 (2023).
  19. D. Vercruysse, N. V. Sapra, K. Y. Yang, and J. Vuckovic, “Inverse-designed photonic crystal circuits for optical beam steering,” \JournalTitleACS Photonics 8, 3085–3093 (2021).
  20. E. Nussbaum, E. Sauer, and S. Hughes, “Inverse design of broadband and lossless topological photonic crystal waveguide modes,” \JournalTitleOptics Letters 46, 1732–1735 (2021).
  21. B. Vial and Y. Hao, “Open-source computational photonics with auto differentiable topology optimization,” \JournalTitleMathematics 10, 3912 (2022).
  22. H. Men, K. Y. Lee, R. M. Freund, et al., “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” \JournalTitleOptics express 22, 22632–22648 (2014).
  23. D. Castelló-Lurbe, E. Silvestre et al., “Inverse dispersion engineering in silicon waveguides,” \JournalTitleJOSA B 31, 1829–1835 (2014).
  24. M. F. O. Hameed, A.-k. S. Hassan, A. E. Elqenawy, and S. S. Obayya, “Modified trust region algorithm for dispersion optimization of photonic crystal fibers,” \JournalTitleJournal of Lightwave Technology 35, 3810–3818 (2017).
  25. R. Stainko and O. Sigmund, “Tailoring dispersion properties of photonic crystal waveguides by topology optimization,” \JournalTitleWaves in Random and Complex Media 17, 477–489 (2007).
  26. C. Xin, S. Lu, J. Yang, et al., “Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate,” \JournalTitlearXiv preprint arXiv:2404.12381 (2024).
  27. P.-K. Chen, I. Briggs, C. Cui, et al., “Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides,” \JournalTitleNature Nanotechnology 19, 44–50 (2024).
  28. H. R. Fergestad and K. Gallo, “Ultrabroadband second harmonic generation at telecom-wavelengths in lithium niobate waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optica Publishing Group, 2020), pp. ITu4A–13.
  29. C. Zhang, X. Tian, H. Liu, et al., “Ultrabroadband second-harmonic generation based on a dispersion-engineered lithium niobate on insulator waveguide,” \JournalTitleJOSA B 39, 3304–3310 (2022).
  30. S. G. Johnson, “The NLopt nonlinear-optimization package,” (2014).
  31. S. G. Johnson and contributors, “GeometryPrimitives.jl,” https://github.com/stevengj/GeometryPrimitives.jl (2022).
  32. S. Gowda, Y. Ma, A. Cheli, et al., “High-performance symbolic-numerics via multiple dispatch,” \JournalTitlearXiv preprint arXiv:2105.03949 (2021).
  33. A. F. Oskooi, C. Kottke, and S. G. Johnson, “Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing,” \JournalTitleOpt. Lett. 34, 2778–2780 (2009).
  34. C. Kottke, A. Farjadpour, and S. G. Johnson, “Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods,” \JournalTitlePhysical Review E 77, 036611 (2008).
  35. Y. Zhou, C. Barnes, J. Lu, et al., “On the continuity of rotation representations in neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019).
  36. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” \JournalTitleOptics express 8, 173–190 (2001).
  37. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” \JournalTitleProceedings of the IEEE 93, 216–231 (2005).
  38. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” \JournalTitleSIAM review 59, 65–98 (2017).
  39. “IterativeSolvers.jl,” https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl (2021).
  40. A. Montoison, D. Orban, and contributors, “Krylov.jl: A Julia basket of hand-picked Krylov methods,” https://github.com/JuliaSmoothOptimizers/Krylov.jl (2020).
  41. M. F. Herbst, A. Levitt, and E. Cancès, “DFTK: A Julian approach for simulating electrons in solids,” \JournalTitleProc. JuliaCon Conf. 3, 69 (2021).
  42. “ChainRules.jl,” https://github.com/JuliaDiff/ChainRules.jl (2021).
  43. S. G. Johnson, “Notes on adjoint methods for 18.335,” https://math.mit.edu/~stevenj/18.336/adjoint.pdf (2021).
  44. B. S. Elkus, K. Abdelsalam, A. Rao, et al., “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” \JournalTitleOptics express 27, 38521–38531 (2019).
  45. J. Mishra, M. Jankowski, A. Y. Hwang, et al., “Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate,” \JournalTitleOptics Express 30, 32752–32760 (2022).
  46. H. Du, X. Zhang, L. Wang, and F. Chen, “Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide,” \JournalTitleOptics Express 31, 9713–9726 (2023).
  47. L. Ledezma, A. Roy, L. Costa, et al., “Octave-spanning tunable infrared parametric oscillators in nanophotonics,” \JournalTitleScience Advances 9, eadf9711 (2023).
  48. P. Aashna, H.-L. Lin, E. H. Dogheche, et al., “Theoretical design for broadband parametric amplification in thin film lithium niobate,” in 2023 IEEE Photonics Conference (IPC), (IEEE, 2023), pp. 1–2.
  49. R. Sekine, R. M. Gray, L. Ledezma, et al., “Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator,” \JournalTitlearXiv preprint arXiv:2309.04545 (2023).
  50. A. Roy, L. Ledezma, L. Costa, et al., “Visible-to-mid-ir tunable frequency comb in nanophotonics,” \JournalTitleNature Communications 14, 6549 (2023).
  51. J. Williams, R. Nehra, E. Sendonaris, et al., “Ultra-short pulse biphoton source in lithium niobate nanophotonics at 2\\\backslash\textmu m,” \JournalTitlearXiv preprint arXiv:2402.05163 (2024).
  52. T.-H. Wu, L. Ledezma, C. Fredrick, et al., “Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides,” \JournalTitleNature Photonics pp. 1–6 (2024).
  53. C. Huang, Y. Luo, Y. Zhao, et al., “A conformal mapping approach to broadband nonlinear optics on chip,” \JournalTitleNature Photonics pp. 1–7 (2024).
  54. M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” \JournalTitleIEEE Journal of quantum electronics 28, 2631–2654 (1992).
  55. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” \JournalTitleSIAM Journal on Optimization 12, 555–573 (2002).
  56. M. Chen, R. E. Christiansen, J. A. Fan, et al., “Validation and characterization of algorithms and software for photonics inverse design,” \JournalTitleJOSA B 41, A161–A176 (2024).
  57. “Santec TSL-570 tunable laser datasheet,” https://www.santec.com/dcms_media/other/instruments_TSL-570-C-E.pdf (2022).
  58. V. Jayaraman, G. Cole, M. Robertson, et al., “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” \JournalTitleElectronics letters 48, 867–869 (2012).
  59. N. K. Thipparapu, A. Umnikov, P. Barua, and J. Sahu, “Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320–1360 nm,” \JournalTitleOptics letters 41, 1518–1521 (2016).
  60. Y. Wang, N. K. Thipparapu, D. J. Richardson, and J. K. Sahu, “Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands,” \JournalTitleJournal of Lightwave Technology 39, 795–800 (2021).
  61. “FiniteDifferences.jl,” https://github.com/JuliaDiff/FiniteDifferences.jl (2022).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube