Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KG-oscillators in Som-Raychaudhuri rotating cosmic string spacetime in a mixed magnetic field (2405.10585v1)

Published 17 May 2024 in gr-qc and astro-ph.HE

Abstract: We investigate Klein-Gordon (KG) oscillators in a G\"{o}% del-type Som-Raychaudhuri spacetime in a mixed magnetic field (given by the vector potential $A_{\mu }=\left( 0,0,A_{\varphi },0\right) $, with $% A_{\varphi }=B_{1}r{2}/2+B_{2}r$). The resulting KG equation takes a Schr% \"{o}dinger-like form (with an oscillator plus a linear plus a Coulomb-like interactions potential) that admits a solution in the form of biconfluent Heun functions/series $H_{B}\left( \alpha ,\beta ,\gamma ,\delta ,z\right) $% . The usual power series expansion of which is truncated to a polynomial of \ order $n_{r}+1=n\geq 1$ through the usual condition $\gamma =2\left( n_{r}+1\right) +\alpha $. However, we use the very recent recipe suggested by Mustafa \cite{1.29} as an alternative parametric condition/correlation. i.e., $\delta =-\beta \left( 2n_{r}+\alpha +3\right) $, to facilitate conditional exact solvability of the problem. We discuss and report the effects of the mixed magnetic field as well as the effects of the G\"{o}del-type SR-spacetime background on the KG-oscillators' spectroscopic structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. T. W. B. Kibble, J. Phys. A 9 (1976) 1387.
  2. T. W. B. Kibble, arXiv:astro-ph/0410073v2 ”Cosmic Strings Rebon?” (2004).
  3. T. W. B. Kibble, Phys. Rep. 67 (1980) 183.
  4. A. Vilenkin, Phys. Rep. 121 (1985) 263.
  5. A. Vilenkin, Phys. Rev. D 23 (1981) 852.
  6. K. Jusufi, Eur. Phys. J. C 76 (2016) 332.
  7. K. Gödel, Rev. Mod. Phys. 21 (1949) 447.
  8. G. Clėment, Ann. Phys. 201 (1990) 241.
  9. E. Šimánek, Phys. Rev. D 78 (2008) 045014.
  10. O. Mustafa, Eur. Phys. J. C 84 (2024) 362.
  11. F. Ahmed, Eur. Phys. J. C 78 (2018) 598.
  12. K. Bakke, Braz. J. Phys. 42 (2012) 437.
  13. O. Mustafa, Nucl. Phys. B 995 (2023) 116334.
  14. O. Mustafa, Ann. Phys. 440 (2022) 168857.
  15. O. Mustafa, Phys. Lett. B 839 (2023) 137793.
  16. O. Mustafa, Phys. Lett. B 850 (2024) 138482.
  17. O. Mustafa, Eur. Phys. J. C 82 (2022) 82.
  18. O. Mustafa, Int. J. Geom. Meth. Mod. Phys. 20 (2023) 2350221.
  19. B. Khosropour, Indian. J. Phys. 92 (2018) 43.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.