Papers
Topics
Authors
Recent
2000 character limit reached

Topological phases of extended Su-Schrieffer-Heeger-Hubbard model

Published 16 May 2024 in cond-mat.str-el and quant-ph | (2405.10351v2)

Abstract: Despite extensive studies on the one-dimensional Su-Schrieffer-Heeger-Hubbard (SSHH) model, the variant incorporating next-nearest neighbour hopping remains largely unexplored. Here, we investigate the ground-state properties of this extended SSHH model using the constrained-path auxiliary-field quantum Monte Carlo (CP-AFQMC) method. We show that this model exhibits rich topological phases, characterized by robust edge states against interaction. We quantify the properties of these edge states by analyzing spin correlation and second-order R\'enyi entanglement entropy. The system exhibits long-range spin correlation and near-zero R\'enyi entropy at half-filling. Besides, there is a long-range anti-ferromagnetic order at quarter-filling. Interestingly, an external magnetic field disrupts this long-range anti-ferromagnetic order, restoring long-range spin correlation and near-zero R\'enyi entropy. Furthermore, our work provides a paradigm studying topological properties in large interacting systems via the CP-AFQMC algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  3. X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017).
  4. N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature nanotechnology 8, 899 (2013).
  5. C. Beenakker, Search for majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
  6. L. Li, Z. Xu, and S. Chen, Topological phases of generalized su-schrieffer-heeger models, Phys. Rev. B 89, 085111 (2014).
  7. L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007).
  8. A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016).
  9. S. Ryu and Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems, Phys. Rev. Lett. 89, 077002 (2002).
  10. X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B 74, 045125 (2006).
  11. N. Cooper, J. Dalibard, and I. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).
  12. D. Pesin and A. H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators, Nature materials 11, 409 (2012).
  13. N. H. Le, A. J. Fisher, and E. Ginossar, Extended hubbard model for mesoscopic transport in donor arrays in silicon, Phys. Rev. B 96, 245406 (2017).
  14. S. Rachel, Interacting topological insulators: a review, Reports on Progress in Physics 81, 116501 (2018).
  15. E. Tang and X.-G. Wen, Interacting one-dimensional fermionic symmetry-protected topological phases, Phys. Rev. Lett. 109, 096403 (2012).
  16. H.-C. Jiang, Z. Wang, and L. Balents, Identifying topological order by entanglement entropy, Nature Physics 8, 902 (2012).
  17. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
  18. J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62, 2747 (1989).
  19. H. Bethe, On the theory of metals, i. eigenvalues and eigenfunctions of a linear chain of atoms, in Selected Works Of Hans A Bethe: (With Commentary) (World Scientific, 1997) pp. 155–183.
  20. S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained path quantum monte carlo method for fermion ground states, Phys. Rev. Lett. 74, 3652 (1995).
  21. S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained path monte carlo method for fermion ground states, Phys. Rev. B 55, 7464 (1997).
  22. S. Zhang, 15 auxiliary-field quantum monte carlo for correlated electron systems, Emergent Phenomena in Correlated Matter  (2013).
  23. M. J. Panza, Application of power method and dominant eigenvector/eigenvalue concept for approximate eigenspace solutions to mechanical engineering algebraic systems, American Journal of Mechanical Engineering 6, 98 (2018).
  24. J. E. Hirsch, Discrete hubbard-stratonovich transformation for fermion lattice models, Phys. Rev. B 28, 4059 (1983).
  25. M. Qin, Self-consistent optimization of the trial wave function within the constrained path auxiliary field quantum monte carlo method using mixed estimators, Phys. Rev. B 107, 235124 (2023).
  26. E. Vitali, P. Rosenberg, and S. Zhang, Calculating ground-state properties of correlated fermionic systems with bcs trial wave functions in slater determinant path-integral approaches, Phys. Rev. A 100, 023621 (2019).
  27. G. C. Wick, The evaluation of the collision matrix, Phys. Rev. 80, 268 (1950).
  28. T. Grover, Entanglement of interacting fermions in quantum monte carlo calculations, Phys. Rev. Lett. 111, 130402 (2013).
  29. F. F. Assaad, T. C. Lang, and F. Parisen Toldin, Entanglement spectra of interacting fermions in quantum monte carlo simulations, Phys. Rev. B 89, 125121 (2014).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.