Topological phases of extended Su-Schrieffer-Heeger-Hubbard model
Abstract: Despite extensive studies on the one-dimensional Su-Schrieffer-Heeger-Hubbard (SSHH) model, the variant incorporating next-nearest neighbour hopping remains largely unexplored. Here, we investigate the ground-state properties of this extended SSHH model using the constrained-path auxiliary-field quantum Monte Carlo (CP-AFQMC) method. We show that this model exhibits rich topological phases, characterized by robust edge states against interaction. We quantify the properties of these edge states by analyzing spin correlation and second-order R\'enyi entanglement entropy. The system exhibits long-range spin correlation and near-zero R\'enyi entropy at half-filling. Besides, there is a long-range anti-ferromagnetic order at quarter-filling. Interestingly, an external magnetic field disrupts this long-range anti-ferromagnetic order, restoring long-range spin correlation and near-zero R\'enyi entropy. Furthermore, our work provides a paradigm studying topological properties in large interacting systems via the CP-AFQMC algorithm.
- M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017).
- N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature nanotechnology 8, 899 (2013).
- C. Beenakker, Search for majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
- L. Li, Z. Xu, and S. Chen, Topological phases of generalized su-schrieffer-heeger models, Phys. Rev. B 89, 085111 (2014).
- L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007).
- A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016).
- S. Ryu and Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems, Phys. Rev. Lett. 89, 077002 (2002).
- X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B 74, 045125 (2006).
- N. Cooper, J. Dalibard, and I. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).
- D. Pesin and A. H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators, Nature materials 11, 409 (2012).
- N. H. Le, A. J. Fisher, and E. Ginossar, Extended hubbard model for mesoscopic transport in donor arrays in silicon, Phys. Rev. B 96, 245406 (2017).
- S. Rachel, Interacting topological insulators: a review, Reports on Progress in Physics 81, 116501 (2018).
- E. Tang and X.-G. Wen, Interacting one-dimensional fermionic symmetry-protected topological phases, Phys. Rev. Lett. 109, 096403 (2012).
- H.-C. Jiang, Z. Wang, and L. Balents, Identifying topological order by entanglement entropy, Nature Physics 8, 902 (2012).
- D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
- J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62, 2747 (1989).
- H. Bethe, On the theory of metals, i. eigenvalues and eigenfunctions of a linear chain of atoms, in Selected Works Of Hans A Bethe: (With Commentary) (World Scientific, 1997) pp. 155–183.
- S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained path quantum monte carlo method for fermion ground states, Phys. Rev. Lett. 74, 3652 (1995).
- S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained path monte carlo method for fermion ground states, Phys. Rev. B 55, 7464 (1997).
- S. Zhang, 15 auxiliary-field quantum monte carlo for correlated electron systems, Emergent Phenomena in Correlated Matter (2013).
- M. J. Panza, Application of power method and dominant eigenvector/eigenvalue concept for approximate eigenspace solutions to mechanical engineering algebraic systems, American Journal of Mechanical Engineering 6, 98 (2018).
- J. E. Hirsch, Discrete hubbard-stratonovich transformation for fermion lattice models, Phys. Rev. B 28, 4059 (1983).
- M. Qin, Self-consistent optimization of the trial wave function within the constrained path auxiliary field quantum monte carlo method using mixed estimators, Phys. Rev. B 107, 235124 (2023).
- E. Vitali, P. Rosenberg, and S. Zhang, Calculating ground-state properties of correlated fermionic systems with bcs trial wave functions in slater determinant path-integral approaches, Phys. Rev. A 100, 023621 (2019).
- G. C. Wick, The evaluation of the collision matrix, Phys. Rev. 80, 268 (1950).
- T. Grover, Entanglement of interacting fermions in quantum monte carlo calculations, Phys. Rev. Lett. 111, 130402 (2013).
- F. F. Assaad, T. C. Lang, and F. Parisen Toldin, Entanglement spectra of interacting fermions in quantum monte carlo simulations, Phys. Rev. B 89, 125121 (2014).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.