Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Implementation and Analysis of a Practical Quantum Link Architecture Utilizing Entangled Photon Sources (2405.09861v1)

Published 16 May 2024 in quant-ph and cs.NI

Abstract: Quantum repeater networks play a crucial role in distributing entanglement. Various link architectures have been proposed to facilitate the creation of Bell pairs between distant nodes, with entangled photon sources emerging as a primary technology for building quantum networks. Our work advances the Memory-Source-Memory (MSM) link architecture, addressing the absence of practical implementation details. We conduct numerical simulations using the Quantum Internet Simulation Package (QuISP) to analyze the performance of the MSM link and contrast it with other link architectures. We observe a saturation effect in the MSM link, where additional quantum resources do not affect the Bell pair generation rate of the link. By introducing a theoretical model, we explain the origin of this effect and characterize the parameter region where it occurs. Our work bridges theoretical insights with practical implementation, which is crucial for robust and scalable quantum networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018, doi:10.1126/science.aam9288.
  2. S. Pirandola et al., “Advances in quantum cryptography,” Adv. Opt. Photon., vol. 12, no. 4, pp. 1012–1236, 2020, doi:10.1364/AOP.361502.
  3. M. Caleffi et al., “Distributed quantum computing: a survey,” 2022, doi:10.48550/arXiv.2212.10609.
  4. J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Information, vol. 3, no. 1, p. 23, 2017, doi:10.1038/s41534-017-0025-3.
  5. T. J. Proctor, P. A. Knott, and J. A. Dunningham, “Multiparameter estimation in networked quantum sensors,” Phys. Rev. Lett., vol. 120, p. 080501, Feb 2018, doi:10.1103/PhysRevLett.120.080501.
  6. D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett., vol. 109, p. 070503, Aug 2012, doi:10.1103/PhysRevLett.109.070503.
  7. E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Information, vol. 4, no. 1, p. 40, 2018, doi:10.1038/s41534-018-0090-2.
  8. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett., vol. 81, pp. 5932–5935, Dec 1998, doi:10.1103/PhysRevLett.81.5932.
  9. K. Azuma et al., “Quantum repeaters: From quantum networks to the quantum internet,” Rev. Mod. Phys., vol. 95, p. 045006, Dec 2023, doi:10.1103/RevModPhys.95.045006.
  10. D. L. Moehring et al., “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007, doi:10.1038/nature06118.
  11. V. Krutyanskiy et al., “Entanglement of trapped-ion qubits separated by 230 meters,” Phys. Rev. Lett., vol. 130, p. 050803, Feb 2023, doi:10.1103/PhysRevLett.130.050803.
  12. J. Hofmann et al., “Heralded entanglement between widely separated atoms,” Science, vol. 337, no. 6090, pp. 72–75, 2012, doi:10.1126/science.1221856.
  13. H. Bernien et al., “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, 2013, doi:10.1038/nature12016.
  14. S. Storz et al., “Loophole-free bell inequality violation with superconducting circuits,” Nature, vol. 617, no. 7960, pp. 265–270, 2023, doi:10.1038/s41586-023-05885-0.
  15. M. Pompili et al., “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021, doi:10.1126/science.abg1919.
  16. V. Krutyanskiy et al., “Telecom-wavelength quantum repeater node based on a trapped-ion processor,” Phys. Rev. Lett., vol. 130, p. 213601, May 2023, doi:10.1103/PhysRevLett.130.213601.
  17. K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nature Communications, vol. 6, no. 1, p. 6787, 2015, doi:10.1038/ncomms7787.
  18. Z.-D. Li et al., “Experimental quantum repeater without quantum memory,” Nature Photonics, vol. 13, no. 9, pp. 644–648, 2019, doi:10.1038/s41566-019-0468-5.
  19. Y. Hasegawa et al., “Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters,” Nature Communications, vol. 10, no. 1, p. 378, 2019, doi:10.1038/s41467-018-08099-5.
  20. D. Buterakos, E. Barnes, and S. E. Economou, “Deterministic generation of all-photonic quantum repeaters from solid-state emitters,” Phys. Rev. X, vol. 7, p. 041023, Oct 2017, doi:10.1103/PhysRevX.7.041023.
  21. N. Benchasattabuse, M. Hajdušek, and R. Van Meter, “Architecture and protocols for all-photonic quantum repeaters,” 2023, doi:10.48550/arXiv.2306.03748.
  22. S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. Van Meter, “High-speed quantum networking by ship,” Scientific Reports, vol. 6, no. 1, p. 36163, 2016, doi:10.1038/srep36163.
  23. C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks,” New Journal of Physics, vol. 18, no. 8, p. 083015, aug 2016, doi:10.1088/1367-2630/18/8/083015.
  24. R. Satoh et al., “Quisp: a quantum internet simulation package,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 353–364, doi:10.1109/QCE53715.2022.00056.
  25. A. Chia, M. Hajdušek, R. Fazio, L.-C. Kwek, and V. Vedral, “Phase diffusion and the small-noise approximation in linear amplifiers: Limitations and beyond,” Quantum, vol. 3, p. 200, 2019, doi:10.22331/q-2019-11-04-200.
  26. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982, doi:10.1038/299802a0.
  27. M. Hajdušek and R. Van Meter, “Quantum communications,” 2023, doi:10.48550/arXiv.2311.02367.
  28. C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett., vol. 91, p. 110405, Sep 2003, doi:10.1103/PhysRevLett.91.110405.
  29. L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett., vol. 90, p. 253601, Jun 2003, doi:10.1103/PhysRevLett.90.253601.
  30. X.-L. Feng, Z.-M. Zhang, X.-D. Li, S.-Q. Gong, and Z.-Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett., vol. 90, p. 217902, May 2003, doi:10.1103/PhysRevLett.90.217902.
  31. W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nature Photonics, vol. 4, no. 11, pp. 792–796, Nov. 2010, doi:10.1038/nphoton.2010.213.
  32. C. Jones, K. D. Greve, and Y. Yamamoto, “A high-speed optical link to entangle quantum dots,” 2013, doi:10.48550/arXiv.1310.4609.
  33. C.-Y. Lu, Y. Cao, C.-Z. Peng, and J.-W. Pan, “Micius quantum experiments in space,” Rev. Mod. Phys., vol. 94, p. 035001, Jul 2022, doi:10.1103/RevModPhys.94.035001.
  34. R. Van Meter et al., “A quantum internet architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 341–352, doi:10.1109/QCE53715.2022.00055.
  35. K. Teramoto, M. Hajdušek, T. Sasaki, R. Van Meter, and S. Nagayama, “Ruleset-based recursive quantum internetworking,” in Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum Computing, ser. QuNet ’23.   New York, NY, USA: Association for Computing Machinery, 2023, p. 25–30, doi:10.1145/3610251.3610556.
  36. W. Kozlowski et al., “Architectural Principles for a Quantum Internet,” RFC 9340, Mar. 2023, doi:10.17487/RFC9340.
Citations (1)

Summary

We haven't generated a summary for this paper yet.