Performance of Quantum Networks Using Heterogeneous Link Architectures (2405.09862v1)
Abstract: The heterogeneity of quantum link architectures is an essential theme in designing quantum networks for technological interoperability and possibly performance optimization. However, the performance of heterogeneously connected quantum links has not yet been addressed. Here, we investigate the integration of two inherently different technologies, with one link where the photons flow from the nodes toward a device in the middle of the link, and a different link where pairs of photons flow from a device in the middle towards the nodes. We utilize the quantum internet simulator QuISP to conduct simulations. We first optimize the existing photon pair protocol for a single link by taking the pulse rate into account. Here, we find that increasing the pulse rate can actually decrease the overall performance. Using our optimized links, we demonstrate that heterogeneous networks actually work. Their performance is highly dependent on link configuration, but we observe no significant decrease in generation rate compared to homogeneous networks. This work provides insights into the phenomena we likely will observe when introducing technological heterogeneity into quantum networks, which is crucial for creating a scalable and robust quantum internetwork.
- S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018, doi:10.1126/science.aam9288.
- W. Kozlowski et al., “Architectural Principles for a Quantum Internet,” RFC 9340, Mar. 2023, doi:10.17487/RFC9340.
- K. Azuma et al., “Quantum repeaters: From quantum networks to the quantum internet,” Rev. Mod. Phys., vol. 95, p. 045006, Dec 2023, doi:10.1103/RevModPhys.95.045006.
- M. Hajdušek and R. Van Meter, “Quantum communications,” 2023, doi:10.48550/arXiv.2311.02367.
- S. Pirandola et al., “Advances in quantum cryptography,” Adv. Opt. Photon., vol. 12, no. 4, pp. 1012–1236, 2020, doi:10.1364/AOP.361502.
- T. J. Proctor, P. A. Knott, and J. A. Dunningham, “Multiparameter estimation in networked quantum sensors,” Phys. Rev. Lett., vol. 120, p. 080501, Feb 2018, doi:10.1103/PhysRevLett.120.080501.
- D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes using quantum repeaters,” Phys. Rev. Lett., vol. 109, p. 070503, Aug 2012, doi:10.1103/PhysRevLett.109.070503.
- M. Caleffi et al., “Distributed quantum computing: a survey,” 2022, doi:10.48550/arXiv.2212.10609.
- J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Information, vol. 3, no. 1, p. 23, 2017, doi:10.1038/s41534-017-0025-3.
- M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, ser. STOC ’05. New York, NY, USA: Association for Computing Machinery, 2005, p. 481–485, doi:10.1145/1060590.1060662.
- C. B. Young et al., “An architecture for quantum networking of neutral atom processors,” Applied Physics B, vol. 128, no. 8, Jul. 2022, doi:10.1007/s00340-022-07865-0.
- W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982, doi:10.1038/299802a0.
- J. L. Park, “The concept of transition in quantum mechanics,” Foundations of Physics, vol. 1, no. 1, pp. 23–33, 1970, doi:10.1007/BF00708652.
- M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys. Rev. Lett., vol. 71, pp. 4287–4290, Dec 1993, doi:10.1103/PhysRevLett.71.4287.
- H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett., vol. 81, pp. 5932–5935, Dec 1998, doi:10.1103/PhysRevLett.81.5932.
- C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks,” New Journal of Physics, vol. 18, no. 8, p. 083015, aug 2016, doi:10.1088/1367-2630/18/8/083015.
- K. S. Soon et al., “An implementation and analysis of a practical quantum link architecture utilizing entangled photon sources,” 2024.
- K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nature Communications, vol. 6, no. 1, p. 6787, 2015, doi:10.1038/ncomms7787.
- Y.-A. Chen et al., “An integrated space-to-ground quantum communication network over 4,600 kilometres,” Nature, vol. 589, no. 7841, pp. 214–219, 2021.
- R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto, “Path selection for quantum repeater networks,” Networking Science, vol. 3, no. 1–4, p. 82–95, Dec. 2013, doi:10.1007/s13119-013-0026-2.
- R. Satoh et al., “QuISP: a Quantum Internet Simulation Package,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, Sep. 2022, doi:10.1109/qce53715.2022.00056.
- J. Calsamiglia and N. Lütkenhaus, “Maximum efficiency of a linear-optical Bell-state analyzer,” Applied Physics B, vol. 72, no. 1, p. 67–71, Jan. 2001, doi:10.1007/s003400000484.
- C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free Bell test with ions and photons,” Phys. Rev. Lett., vol. 91, p. 110405, Sep 2003, doi:10.1103/PhysRevLett.91.110405.
- L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett., vol. 90, p. 253601, Jun 2003, doi:10.1103/PhysRevLett.90.253601.
- X.-L. Feng, Z.-M. Zhang, X.-D. Li, S.-Q. Gong, and Z.-Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett., vol. 90, p. 217902, May 2003, doi:10.1103/PhysRevLett.90.217902.
- W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nature Photonics, vol. 4, no. 11, pp. 792–796, Nov. 2010, doi:10.1038/nphoton.2010.213.
- D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature, vol. 594, no. 7861, p. 37–40, Jun. 2021, doi:10.1038/s41586-021-03481-8.
- P. van Loock et al., “Hybrid quantum computation in quantum optics,” Physical Review A, vol. 78, no. 2, Aug. 2008, doi:10.1103/physreva.78.022303.
- C. Jones, K. D. Greve, and Y. Yamamoto, “A high-speed optical link to entangle quantum dots,” 2013, doi:10.48550/arXiv.1310.4609.
- V. Cerf and R. Kahn, “A protocol for packet network intercommunication,” IEEE Transactions on Communications, vol. 22, no. 5, pp. 637–648, 1974, doi:10.1109/TCOM.1974.1092259.
- D. Clark, “Designing an internet.” The MIT Press, 2018, doi:10.7551/mitpress/11373.001.0001.
- R. Van Meter et al., “A quantum internet architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, Sep. 2022, doi:10.1109/qce53715.2022.00055.
- K. Teramoto, M. Hajdušek, T. Sasaki, R. Van Meter, and S. Nagayama, “Ruleset-based recursive quantum internetworking,” in Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum Computing, ser. QuNet ’23. New York, NY, USA: Association for Computing Machinery, 2023, p. 25–30, doi:10.1145/3610251.3610556.
- R. Satoh, “RuLa: A programming language for ruleset-based quantum repeaters,” 2023, doi:10.48550/arXiv.2305.09895.