Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement Swapping in Orbit: a Satellite Quantum Link Case Study (2405.07589v2)

Published 13 May 2024 in quant-ph and cs.NI

Abstract: Satellite quantum communication is a promising way to build long distance quantum links, making it an essential complement to optical fiber for quantum internetworking beyond metropolitan scales. A satellite point to point optical link differs from the more common fiber links in many ways, both quantitative (higher latency, strong losses) and qualitative (nonconstant parameter values during satellite passage, intermittency of the link, impossibility to set repeaters between the satellite and the ground station). We study here the performance of a quantum link between two ground stations, using a quantum-memory-equipped satellite as a quantum repeater. In contrast with quantum key distribution satellite links, the number of available quantum memory slots m, together with the unavoidable round-trip communication latency t of at least a few milliseconds, severely reduces the effective average repetition rate to m/t -- at most a few kilohertz for foreseeable quantum memories. Our study uses two approaches, which validate each other: 1) a simple analytical model of the effective rate of the quantum link; 2) an event-based simulation using the open source Quantum Internet Simulation Package (QuISP). The important differences between satellite and fiber links led us to modify QuISP itself. This work paves the way to the study of hybrid satellite- and fiber-based quantum repeater networks interconnecting different metropolitan areas.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. L. de Forges de Parny, O. Alibart, J. Debaud, S. Gressani, A. Lagarrigue, A. Martin, A. Metrat, M. Schiavon, T. Troisi, E. Diamanti, P. Gélard, E. Kerstel, S. Tanzilli, and M. Van Den Bossche, “Satellite-based quantum information networks: use cases, architecture, and roadmap,” Communications Physics, vol. 6, no. 1, p. 12, Jan 2023. [Online]. Available: https://doi.org/10.1038/s42005-022-01123-7
  2. J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li, R. Shu, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, X.-B. Wang, F. Xu, J.-Y. Wang, C.-Z. Peng, A. K. Ekert, and J.-W. Pan, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, Jun 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
  3. C.-Y. Lu, Y. Cao, C.-Z. Peng, and J.-W. Pan, “Micius quantum experiments in space,” Rev. Mod. Phys., vol. 94, p. 035001, Jul 2022. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.94.035001
  4. D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects (QuICs) for next-generation information technologies,” PRX Quantum, vol. 2, no. 1, Feb. 2021. [Online]. Available: http://dx.doi.org/10.1103/PRXQuantum.2.017002
  5. Quantum protocol zoo. [Online]. Available: https://wiki.veriqloud.fr
  6. D. D. Awschalom, H. Bernien, R. Brown, A. Clerk, E. Chitambar, A. Dibos, J. Dionne, M. Eriksson, B. Fefferman, G. D. Fuchs, J. Gambetta, E. Goldschmidt, S. Guha, F. J. Heremans, K. D. Irwin, A. B. Jayich, L. Jiang, J. Karsch, M. Kasevich, S. Kolkowitz, P. G. Kwiat, T. Ladd, J. Lowell, D. Maslov, N. Mason, A. Y. Matsuura, R. McDermott, R. van Meter, A. Miller, J. Orcutt, M. Saffman, M. Schleier-Smith, M. K. Singh, P. Smith, M. Suchara, F. Toudeh-Fallah, M. Turlington, B. Woods, and T. Zhong, “A roadmap for quantum interconnects,” Argonne National Laboratory, Tech. Rep. ANL-22/83, Jul. 2022. [Online]. Available: https://www.osti.gov/biblio/1900586
  7. R. Satoh, M. Hajdušek, N. Benchasattabuse, S. Nagayama, K. Teramoto, T. Matsuo, S. A. Metwalli, P. Pathumsoot, T. Satoh, S. Suzuki, and R. V. Meter, “Quisp: a quantum internet simulation package,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 353–364.
  8. “Quisp website.” [Online]. Available: https://aqua.sfc.wide.ad.jp/quisp_website/
  9. T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong, D. Podareanu, A. Torres-Knoop, D. Elkouss, and S. Wehner, “Netsquid, a network simulator for quantum information using discrete events,” Communications Physics, vol. 4, no. 1, p. 164, Jul 2021. [Online]. Available: https://doi.org/10.1038/s42005-021-00647-8
  10. R. Van Meter, R. Satoh, N. Benchasattabuse, K. Teramoto, T. Matsuo, M. Hajdušek, T. Satoh, S. Nagayama, and S. Suzuki, “A quantum internet architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 341–352.
  11. Orekit homepage. [Online]. Available: https://www.orekit.org/
  12. Lowtran user’s manual. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA206773
  13. M. Pfennigbauer, M. Aspelmeyer, W. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. Perdigues, H. Weinfurter, and A. Zeilinger, “Satellite-based quantum communication terminal employing state-of-the-arttechnology,” J. Opt. Netw., vol. 4, no. 9, pp. 549–560, Sep 2005. [Online]. Available: https://opg.optica.org/jon/abstract.cfm?URI=jon-4-9-549
  14. S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific Reports, vol. 6, no. 1, p. 20463, Feb 2016. [Online]. Available: https://doi.org/10.1038/srep20463
  15. D. Waitzman, “Standard for the transmission of IP datagrams on avian carriers,” RFC 1149, The Internet Society, Apr. 1990. [Online]. Available: https://www.rfc-editor.org/info/rfc1149
  16. S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. Van Meter, “High-speed quantum networking by ship,” Scientific Reports, vol. 6, p. 26263, Nov. 2016. [Online]. Available: https://dx.doi.org/10.1038/srep36163
  17. C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks,” New Journal of Physics, vol. 18, no. 8, p. 083015, aug 2016. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/18/8/083015
  18. H. Weinfurter, “Experimental bell-state analysis,” vol. 25, no. 8, p. 559.
  19. Omnet++. [Online]. Available: https://omnetpp.org/
  20. T. Matsuo, C. Durand, and R. Van Meter, “Quantum link bootstrapping using a RuleSet-based communication protocol,” Physical Review A, vol. 100, no. 5, Nov. 2019. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.100.052320
  21. R. Satoh, “RuLa: A programming language for ruleset-based quantum repeaters,” Master’s thesis, Keio Universtity, 2022. [Online]. Available: https://arxiv.org/abs/2305.09895
  22. “Add satellite links,” pull request #545 for the project [10]. [Online]. Available: https://github.com/sfc-aqua/quisp/pull/545
Citations (1)

Summary

We haven't generated a summary for this paper yet.