On the conjugacy separability of ordinary and generalized Baumslag-Solitar groups (2405.09736v2)
Abstract: Let $\mathcal{C}$ be a class of groups. A group $X$ is said to be residually a $\mathcal{C}$-group (conjugacy $\mathcal{C}$-separable) if, for any elements $x,y \in X$ that are not equal (not conjugate in $X$), there exists a homomorphism $\sigma$ of $X$ onto a group from $\mathcal{C}$ such that the elements $x\sigma$ and $y\sigma$ are still not equal (respectively, not conjugate in $X\sigma$). A generalized Baumslag-Solitar group or GBS-group is the fundamental group of a finite connected graph of groups whose all vertex and edge groups are infinite cyclic. An ordinary Baumslag-Solitar group is the GBS-group that corresponds to a graph containing only one vertex and one loop. Suppose that the class $\mathcal{C}$ consists of periodic groups and is closed under taking subgroups and unrestricted wreath products. We prove that a non-solvable GBS-group is conjugacy $\mathcal{C}$-separable if and only if it is residually a $\mathcal{C}$-group. We also find a criterion for a solvable GBS-group to be conjugacy $\mathcal{C}$-separable. As a corollary, we prove that an arbitrary GBS-group is conjugacy (finite) separable if and only if it is residually finite.
- Baumslag G., Solitar D. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68 (3), 199–201 (1962). DOI: 10.1090/S0002-9904-1962-10745-9.
- Beeker B. Multiple conjugacy problem in graphs of free abelian groups. Groups Geom. Dyn. 9 (1), 1–27 (2015). DOI: 10.4171/GGD/303.
- Chagas S. C., Zalesskii P. A. Subgroup conjugacy separability of free-by-finite groups. Arch. Math. 104 (2), 101–109 (2015). DOI 10.1007/s00013-015-0727-8.
- Clay M., Forester M. On the isomorphism problem for generalized Baumslag–Solitar groups. Algebr. Geom. Topol. 8 (4), 2289–2322 (2008). DOI: 10.2140/agt.2008.8.2289.
- Cornulier Y., Valette A. On equivariant embeddings of generalized Baumslag–Solitar groups. Geom. Dedicata 175, 385–401 (2015). DOI: 10.1007/s10711-014-9953-7.
- Delgado A. L., Robinson D. J. S., Timm M. Generalized Baumslag–Solitar groups and geometric homomorphisms. J. Pure Appl. Algebra 215 (4), 398–410 (2011). DOI: 10.1016/j.jpaa.2010.04.025.
- Delgado A. L., Robinson D. J. S., Timm M. Generalized Baumslag–Solitar graphs with soluble fundamental groups. Algebra Colloq. 21 (1), 53–58 (2014). DOI: 10.1142/S1005386714000030.
- Delgado A. L., Robinson D. J. S., Timm M. Cyclic normal subgroups of generalized Baumslag–Solitar groups. Comm. Algebra 45 (4), 1808–1818 (2017). DOI: 10.1080/00927872.2016.1226859.
- Delgado A. L., Robinson D. J. S., Timm M. 3333-manifolds and generalized Baumslag–Solitar groups. Comm. Anal. Geom. 26 (3), 571–584 (2018). DOI: 10.4310/CAG.2018.v26.n3.a4.
- Dudkin F. A. On the embedding problem for generalized Baumslag–Solitar groups. J. Group Theory 18 (4), 655–684 (2015). DOI: 10.1515/jgth-2014-0050.
- Dudkin F. A. The centralizer dimension of generalized Baumslag–Solitar groups. Algebra Logic 55 (5), 403–406 (2016). DOI: 10.1007/s10469-016-9412-7.
- Dudkin F. A. The isomorphism problem for generalized Baumslag–Solitar groups with one mobile edge. Algebra Logic 56 (3), 197–209 (2017). DOI: 10.1007/s10469-017-9440-y.
- Dudkin F. A. On the centralizer dimension and lattice of generalized Baumslag–Solitar groups. Sib. Math. J. 59 (3), 403–414 (2018). DOI: 10.1134/S0037446618030035.
- Dudkin F. A. ℱπsubscriptℱ𝜋\mathcal{F}_{\pi}caligraphic_F start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT-residuality of generalized Baumslag–Solitar groups. Arch. Math. 114, 129–134 (2020). DOI: 10.1007/s00013-019-01404-8.
- Dudkin F. A. Universal equivalence of generalized Baumslag–Solitar groups. Algebra Logic 59 (5), 357–366 (2020). DOI: 10.1007/s10469-020-09609-5.
- Dudkin F. A. Finite index subgroups in non-large generalized Baumslag–Solitar groups. Comm. Algebra 49 (9), 3736–3742 (2021). DOI: 10.1080/00927872.2021.1904969.
- Dudkin F. A. Group and algorithmic properties of generalized Baumslag–Solitar groups. Algebra Logic 61 (3), 230–237 (2022). DOI: 10.1007/s10469-022-09691-x.
- Dudkin F. A., Mamontov A. S. On knot groups acting on trees. J. Knot Theory Ramif. 29 (9), Article ID 2050062 (2020). DOI: 10.1142/S0218216520500625.
- Dudkin F. A., Yan N. Torsion in the outer automorphism groups of generalized Baumslag–Solitar groups. Sib. Math. J. 64 (1), 67–75 (2023). DOI: 10.1134/S0037446623010081.
- Ferov M. On conjugacy separability of graph products of groups. J. Algebra 447, 135–182 (2016). DOI: 10.1016/j.jalgebra.2015.08.027.
- Forester M. Deformation and rigidity of simplicial group actions on trees. Geom. Topol. 6, 219–267 (2002). DOI: 10.2140/gt.2002.6.219.
- Forester M. On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78 (4), 740–751 (2003). DOI: 10.1007/s00014-003-0780-y.
- Forester M. Splittings of generalized Baumslag–Solitar groups. Geom. Dedicata 121, 43–59 (2006). DOI: 10.1007/s10711-006-9085-9.
- Gandini G., Meinert S., Rüping H. The Farrell–Jones conjecture for fundamental groups of graphs of abelian groups. Groups Geom. Dyn. 9 (3), 783–792 (2015). DOI: 10.4171/GGD/327.
- Gruenberg K. W. Residual properties of infinite soluble groups. Proc. London Math. Soc. s3-7 (1), 29–62 (1957). DOI: 10.1112/plms/s3-7.1.29.
- Ivanova E. A. On conjugacy p𝑝pitalic_p-separability of free products of two groups with amalgamation. Math. Notes 76 (4), 465–471 (2004). DOI: 10.1023/B:MATN.0000043476.39676.01.
- Ivanova E. A. The conjugacy p𝑝pitalic_p-separability of free products of two groups. Bull. Ivanovo State Univ. 6 (3), 83–91 (2005) [in Russian].
- Kropholler P. H. A note on centrality in 3333-manifold groups. Math. Proc. Camb. Phil. Soc. 107 (2), 261–266 (1990). DOI: 10.1017/S0305004100068523.
- Levitt G. On the automorphism group of generalized Baumslag–Solitar groups. Geom. Topol. 11, 473–515 (2007). DOI: 10.2140/gt.2007.11.473.
- Levitt G. Quotients and subgroups of Baumslag–Solitar groups. J. Group Theory 18 (1), 1–43 (2015). DOI: 10.1515/jgth-2014-0028.
- Meinert S. The Lipschitz metric on deformation spaces of G𝐺Gitalic_G–trees. Algebr. Geom. Topol. 15 (2), 987–1029 (2015). DOI: 10.2140/agt.2015.15.987.
- Meskin S. Nonresidually finite one-relator groups. Trans. Amer. Math. Soc. 164, 105–114 (1972). DOI: 10.1090/S0002-9947-1972-0285589-5.
- Moldavanskii D. I. On the conjugacy p𝑝pitalic_p-separability of certain one-relator groups. Bull. Ivanovo State Univ. 8 (3) 89–94 (2007) [in Russian].
- Moldavanskii D. I. On the residual properties of Baumslag–Solitar groups. Comm. Algebra 46 (9), 3766–3778 (2018). DOI: 10.1080/00927872.2018.1424867.
- Robinson D. J. S. Recent results on generalized Baumslag–Solitar groups. Note Mat. 30 (1), 37–53 (2010). DOI: 10.1285/i15900932v30n1supplp37.
- Robinson D. J. S. The Schur multiplier of a generalized Baumslag–Solitar group. Rend. Sem. Mat. Univ. Padova 125, 207–216 (2011). URL: www.numdam.org/item/RSMUP_2011__125__207_0/.
- Sokolov E. V. A characterization of root classes of groups. Comm. Algebra 43 (2), 856–860 (2015). DOI: 10.1080/00927872.2013.851207.
- Sokolov E. V. On the conjugacy separability of some free constructions of groups by root classes of finite groups. Math. Notes 97 (5), 779–790 (2015). DOI: 10.1134/S0001434615050132.
- Sokolov E. V. Certain residual properties of generalized Baumslag–Solitar groups. J. Algebra 582, 1–25 (2021). DOI: 10.1016/j.jalgebra.2021.05.001.
- Sokolov E. V. Certain residual properties of HNN-extensions with central associated subgroups. Comm. Algebra 50 (3), 962–987 (2022). DOI: 10.1080/00927872.2021.1976791.
- Sokolov E. V. On the separability of subgroups of nilpotent groups by root classes of groups. J. Group Theory 26 (4), 751–777 (2023). DOI: 10.1515/jgth-2022-0021.
- Sokolov E. V. On the separability of abelian subgroups of the fundamental groups of graphs of groups. II. Sib. Math. J. 65 (1), 174–189 (2024). DOI: 10.1134/S0037446624010166.
- Sokolov E. V. Tumanova E. A. To the question of the root-class residuality of free constructions of groups. Lobachevskii J. Math. 41, 260–272 (2020). DOI: 10.1134/S1995080220020158.
- Tumanova E. A. The root class residuality of Baumslag–Solitar groups. Sib. Math. J. 58 (3), 546–552 (2017). DOI: 10.1134/S003744661703017X.
- Tumanova E. A. The root class residuality of the tree product of groups with amalgamated retracts. Sib. Math. J. 60 (4), 699–708 (2019). DOI: 10.1134/S0037446619040153.
- Tumanova E. A. Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag–Solitar groups. Aut. Control Comp. Sci. 56 (7), 800–806 (2022). DOI: 10.3103/S0146411622070203.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.