Papers
Topics
Authors
Recent
2000 character limit reached

Underdetermined DOA Estimation of Off-Grid Sources Based on the Generalized Double Pareto Prior

Published 18 Apr 2024 in eess.SP, cs.IT, and math.IT | (2405.09554v2)

Abstract: In this letter, we investigate a new generalized double Pareto based on off-grid sparse Bayesian learning (GDPOGSBL) approach to improve the performance of direction of arrival (DOA) estimation in underdetermined scenarios. The method aims to enhance the sparsity of source signal by utilizing the generalized double Pareto (GDP) prior. Firstly, we employ a first-order linear Taylor expansion to model the real array manifold matrix, and Bayesian inference is utilized to calculate the off-grid error, which mitigates the grid dictionary mismatch problem in underdetermined scenarios. Secondly, an innovative grid refinement method is introduced, treating grid points as iterative parameters to minimize the modeling error between the source and grid points. The numerical simulation results verify the superiority of the proposed strategy, especially when dealing with a coarse grid and few snapshots.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.