Papers
Topics
Authors
Recent
2000 character limit reached

Necklaces over a group with identity product

Published 14 May 2024 in math.CO and math.GR | (2405.08937v2)

Abstract: We address two variants of the classical necklace counting problem from enumerative combinatorics. In both cases, we fix a finite group $\mathcal{G}$ and a positive integer $n$. In the first variant, we count the ``identity-product $n$-necklaces'' -- that is, the orbits of $n$-tuples $\left(a_1, a_2, \ldots, a_n\right) \in \mathcal{G}n$ that satisfy $a_1 a_2 \cdots a_n = 1$ under cyclic rotation. In the second, we count the orbits of all $n$-tuples $\left(a_1, a_2, \ldots, a_n\right) \in \mathcal{G}n$ under cyclic rotation and left multiplication (i.e., the operation of $\mathcal{G}$ on $\mathcal{G}n$ given by $h \cdot \left(a_1, a_2, \ldots, a_n\right) = \left(ha_1, ha_2, \ldots, ha_n\right)$). We prove bijectively that both answers are the same, and express them as a sum over divisors of $n$. Consequently, we generalize the first problem to $n$-necklaces whose product of entries lies in a given subset of $\mathcal{G}$ (closed under conjugation), and we connect a particular case to the enumeration of irreducible polynomials over a finite field with given degree and second-highest coefficient $0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. E. A. Bender and J. R. Goldman, “On the applications of Möbius inversion in combinatorial analysis,” Amer. Math. Monthly, vol. 82, no. 8, pp. 789–803, 1975. [Online]. Available: https://doi.org/10.2307/2319793
  2. S. W. Golomb and A. Liu, “Solomon Golomb’s course on undergraduate combinatorics,” 2021.
  3. M. Hazewinkel, “Witt vectors. I,” in Handbook of algebra. Vol. 6, ser. Handb. Algebr.   Elsevier/North-Holland, Amsterdam, 2009, vol. 6, pp. 319–472. [Online]. Available: https://doi.org/10.1016/S1570-7954(08)00207-6
  4. I. M. Gessel and C. Reutenauer, “Counting permutations with given cycle structure and descent set,” J. Combin. Theory Ser. A, vol. 64, no. 2, pp. 189–215, 1993. [Online]. Available: https://doi.org/10.1016/0097-3165(93)90095-P
  5. V. Vatter, “A probabilistic proof of a lemma that is not Burnside’s,” Amer. Math. Monthly, vol. 127, p. 63, 2020. [Online]. Available: https://arxiv.org/abs/2007.15106v1
  6. D. Guichard, “An introduction to combinatorics and graph theory,” 2023. [Online]. Available: https://www.whitman.edu/mathematics/cgt_online/cgt.pdf
  7. E. N. Gilbert and J. Riordan, “Symmetry types of periodic sequences,” Illinois J. Math., vol. 5, pp. 657–665, 1961.
  8. N. J. Fine, “Classes of periodic sequences,” Illinois J. Math., vol. 2, pp. 285–302, 1958.
  9. OEIS Foundation Inc., “The On-Line Encyclopedia of Integer Sequences,” 2024, published electronically at http://oeis.org.
  10. N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and designs (Columbus, OH, 2000), ser. Ohio State Univ. Math. Res. Inst. Publ.   de Gruyter, Berlin, 2002, vol. 10, pp. 273–291, newer version at http://neilsloane.com/doc/dijen.pdf. [Online]. Available: https://doi.org/10.1515/9783110198119.273
  11. Y. Zelenyuk and Y. Zelenyuk, “Counting symmetric bracelets,” Bull. Aust. Math. Soc., vol. 89, no. 3, pp. 431–436, 2014. [Online]. Available: https://doi.org/10.1017/S0004972713000701
  12. N. Metropolis and G.-C. Rota, “Witt vectors and the algebra of necklaces,” Adv. in Math., vol. 50, no. 2, pp. 95–125, 1983. [Online]. Available: https://doi.org/10.1016/0001-8708(83)90035-X
  13. P. M. Higgins, “Burrows-Wheeler transformations and de Bruijn words,” Theoret. Comput. Sci., vol. 457, pp. 128–136, 2012. [Online]. Available: https://arxiv.org/abs/1901.08392v1
  14. R. L. Miller, “Necklaces, symmetries and self-reciprocal polynomials,” Discrete Math., vol. 22, no. 1, pp. 25–33, 1978. [Online]. Available: https://doi.org/10.1016/0012-365X(78)90043-2

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.