Constant-roll inflation with a complex scalar field (2405.08928v1)
Abstract: We consider inflation with a constant rate of rolling in which a complex scalar field plays the role of inflaton during the inflationary epoch. We implement the inflationary analysis for an accredited angular speed $\dot{\theta}$ which satisfies our dynamical equations. Scalar and tensorial perturbations generated in the framework of constant roll inflation with a complex field are studied. In this respect, we find analytically solutions to the gauge invariant fluctuations, with which an expression for the scalar power spectrum together with its scalar index spectral in this scenario were found. By comparing the obtained results with the observations coming from the cosmic microwave background anisotropies, the constraints on the parameters space of the model and also its predictions are analyzed and discussed.
- A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D, vol. 23, pp. 347–356, 1981.
- A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. B, vol. 108, pp. 389–393, 1982.
- A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett., vol. 48, pp. 1220–1223, 1982.
- D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmological density perturbation,” Phys. Rept., vol. 314, pp. 1–146, 1999.
- L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev. Lett., vol. 73, pp. 3195–3198, 1994.
- Y. Shtanov, J. H. Traschen, and R. H. Brandenberger, “Universe reheating after inflation,” Phys. Rev. D, vol. 51, pp. 5438–5455, 1995.
- F. Lucchin, S. Matarrese, and M. D. Pollock, “Inflation With a Nonminimally Coupled Scalar Field,” Phys. Lett. B, vol. 167, pp. 163–168, 1986.
- T. Futamase and K.-i. Maeda, “Chaotic Inflationary Scenario in Models Having Nonminimal Coupling With Curvature,” Phys. Rev. D, vol. 39, pp. 399–404, 1989.
- R. Fakir and W. G. Unruh, “Improvement on cosmological chaotic inflation through nonminimal coupling,” Phys. Rev. D, vol. 41, pp. 1783–1791, 1990.
- R. Kallosh and A. Linde, “Non-minimal Inflationary Attractors,” JCAP, vol. 10, p. 033, 2013.
- D. C. Edwards and A. R. Liddle, “The observational position of simple non-minimally coupled inflationary scenarios,” JCAP, vol. 09, p. 052, 2014.
- M. Shokri, “A Revision to the Issue of Frames by Non-minimal Large Field Inflation,” 10 2017.
- M. Shokri, F. Renzi, and A. Melchiorri, “Cosmic Microwave Background constraints on non-minimal couplings in inflationary models with power law potentials,” Phys. Dark Univ., vol. 24, p. 100297, 2019.
- M. Shokri, J. Sadeghi, M. R. Setare, and S. Capozziello, “Nonminimal coupling inflation with constant slow roll,” Int. J. Mod. Phys. D, vol. 30, no. 09, p. 2150070, 2021.
- M. Shokri, J. Sadeghi, and M. R. Setare, “The generalized sl(2,R)𝑠𝑙2𝑅sl(2,R)italic_s italic_l ( 2 , italic_R ) and su(1,1)𝑠𝑢11su(1,1)italic_s italic_u ( 1 , 1 ) in non-minimal constant-roll inflation,” Annals Phys., vol. 429, p. 168487, 2021.
- S. Upadhyay, “Bouncing Universe for deformed non-minimally coupled inflation model,” JHAP, vol. 3, no. 1, pp. 57–70, 2023.
- A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. B, vol. 91, pp. 99–102, 1980.
- A. De Felice and S. Tsujikawa, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) theories,” Living Rev. Rel., vol. 13, p. 3, 2010.
- S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,” Phys. Rept., vol. 509, pp. 167–321, 2011.
- S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R)𝐹𝑅F(R)italic_F ( italic_R ) theory to Lorentz non-invariant models,” Phys. Rept., vol. 505, pp. 59–144, 2011.
- I. Ben-Dayan, S. Jing, M. Torabian, A. Westphal, and L. Zarate, “R2logRsuperscript𝑅2𝑅R^{2}\log Ritalic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_log italic_R quantum corrections and the inflationary observables,” JCAP, vol. 09, p. 005, 2014.
- J. Sadeghi, B. Pourhassan, A. S. Kubeka, and M. Rostami, “Logarithmic corrected Polynomial f(R)𝑓𝑅f(R)italic_f ( italic_R ) inflation mimicking a cosmological constant,” Int. J. Mod. Phys. D, vol. 25, no. 07, p. 1650077, 2016.
- H. Motohashi and A. Nishizawa, “Reheating after f(R)𝑓𝑅f(R)italic_f ( italic_R ) inflation,” Phys. Rev. D, vol. 86, p. 083514, 2012.
- F. Renzi, M. Shokri, and A. Melchiorri, “What is the amplitude of the gravitational waves background expected in the Starobinski model?,” Phys. Dark Univ., vol. 27, p. 100450, 2020.
- S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi Said, J. Mifsud, and E. Di Valentino, “Teleparallel gravity: from theory to cosmology,” Rept. Prog. Phys., vol. 86, no. 2, p. 026901, 2023.
- J. Beltrán Jiménez, L. Heisenberg, T. S. Koivisto, and S. Pekar, “Cosmology in f(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) geometry,” Phys. Rev. D, vol. 101, no. 10, p. 103507, 2020.
- S. Capozziello and M. Shokri, “Slow-roll inflation in f(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) non-metric gravity,” Phys. Dark Univ., vol. 37, p. 101113, 2022.
- C. Vafa, “The String landscape and the swampland,” 9 2005.
- G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, “De Sitter Space and the Swampland,” 6 2018.
- P. Agrawal, G. Obied, P. J. Steinhardt, and C. Vafa, “On the Cosmological Implications of the String Swampland,” Phys. Lett. B, vol. 784, pp. 271–276, 2018.
- R. Blumenhagen, “Large Field Inflation/Quintessence and the Refined Swampland Distance Conjecture,” PoS, vol. CORFU2017, p. 175, 2018.
- M. Shokri, M. R. Setare, S. Capozziello, and J. Sadeghi, “Constant-roll f(R)𝑓𝑅f(R)italic_f ( italic_R ) inflation compared with cosmic microwave background anisotropies and swampland criteria,” Eur. Phys. J. Plus, vol. 137, no. 5, p. 639, 2022.
- S. N. Gashti, J. Sadeghi, and B. Pourhassan, “Pleasant behavior of swampland conjectures in the face of specific inflationary models,” Astropart. Phys., vol. 139, p. 102703, 2022.
- J. Sadeghi, B. Pourhassan, S. Noori Gashti, I. Sakallı, and M. R. Alipour, “de Sitter swampland conjecture in string field inflation,” Eur. Phys. J. C, vol. 83, no. 7, p. 635, 2023.
- J. D. Barrow and S. Cotsakis, “Inflation and the Conformal Structure of Higher Order Gravity Theories,” Phys. Lett. B, vol. 214, pp. 515–518, 1988.
- J. Martin, “What have the Planck data taught us about inflation?,” Class. Quant. Grav., vol. 33, no. 3, p. 034001, 2016.
- X. Chen, “Primordial Non-Gaussianities from Inflation Models,” Adv. Astron., vol. 2010, p. 638979, 2010.
- H. Motohashi, A. A. Starobinsky, and J. Yokoyama, “Inflation with a constant rate of roll,” JCAP, vol. 09, p. 018, 2015.
- H. Motohashi and A. A. Starobinsky, “Constant-roll inflation: confrontation with recent observational data,” EPL, vol. 117, no. 3, p. 39001, 2017.
- S. Inoue and J. Yokoyama, “Curvature perturbation at the local extremum of the inflaton’s potential,” Phys. Lett. B, vol. 524, pp. 15–20, 2002.
- C. Pattison, V. Vennin, H. Assadullahi, and D. Wands, “The attractive behaviour of ultra-slow-roll inflation,” JCAP, vol. 08, p. 048, 2018.
- W. H. Kinney, “Horizon crossing and inflation with large eta,” Phys. Rev. D, vol. 72, p. 023515, 2005.
- C. R. Contaldi, M. Peloso, L. Kofman, and A. D. Linde, “Suppressing the lower multipoles in the CMB anisotropies,” JCAP, vol. 07, p. 002, 2003.
- L. Lello and D. Boyanovsky, “Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions,” JCAP, vol. 05, p. 029, 2014.
- D. K. Hazra, A. Shafieloo, G. F. Smoot, and A. A. Starobinsky, “Inflation with Whip-Shaped Suppressed Scalar Power Spectra,” Phys. Rev. Lett., vol. 113, no. 7, p. 071301, 2014.
- S. D. Odintsov and V. K. Oikonomou, “Inflationary Dynamics with a Smooth Slow-Roll to Constant-Roll Era Transition,” JCAP, vol. 04, p. 041, 2017.
- S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Constant-roll Inflation in F(R)𝐹𝑅F(R)italic_F ( italic_R ) Gravity,” Class. Quant. Grav., vol. 34, no. 24, p. 245012, 2017.
- H. Motohashi and A. A. Starobinsky, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) constant-roll inflation,” Eur. Phys. J. C, vol. 77, no. 8, p. 538, 2017.
- A. Ito and J. Soda, “Anisotropic Constant-roll Inflation,” Eur. Phys. J. C, vol. 78, no. 1, p. 55, 2018.
- S. D. Odintsov, V. K. Oikonomou, and L. Sebastiani, “Unification of Constant-roll Inflation and Dark Energy with Logarithmic R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-corrected and Exponential F(R)𝐹𝑅F(R)italic_F ( italic_R ) Gravity,” Nucl. Phys. B, vol. 923, pp. 608–632, 2017.
- S. D. Odintsov and V. K. Oikonomou, “Inflation with a Smooth Constant-Roll to Constant-Roll Era Transition,” Phys. Rev. D, vol. 96, no. 2, p. 024029, 2017.
- A. Awad, W. El Hanafy, G. G. L. Nashed, S. D. Odintsov, and V. K. Oikonomou, “Constant-roll Inflation in f(T)𝑓𝑇f(T)italic_f ( italic_T ) Teleparallel Gravity,” JCAP, vol. 07, p. 026, 2018.
- W.-C. Lin, M. J. P. Morse, and W. H. Kinney, “Dynamical Analysis of Attractor Behavior in Constant Roll Inflation,” JCAP, vol. 09, p. 063, 2019.
- H. Motohashi and A. A. Starobinsky, “Constant-roll inflation in scalar-tensor gravity,” JCAP, vol. 11, p. 025, 2019.
- S. D. Odintsov and V. K. Oikonomou, “Constant-roll k𝑘kitalic_k-Inflation Dynamics,” Class. Quant. Grav., vol. 37, no. 2, p. 025003, 2020.
- M. Shokri, J. Sadeghi, and M. Reza Setare, “Constant-roll inflation from a fermionic field,” EPL, vol. 139, no. 1, p. 19001, 2022.
- M. Shokri, J. Sadeghi, and S. N. Gashti, “Quintessential constant-roll inflation,” Phys. Dark Univ., vol. 35, p. 100923, 2022.
- R. Herrera, M. Shokri, and J. Sadeghi, “Galilean constant-roll inflation,” Phys. Dark Univ., vol. 41, p. 101232, 2023.
- A. Mohammadi, N. Ahmadi, and M. Shokri, “On the constant roll complex scalar field inflationary models,” JCAP, vol. 06, p. 058, 2023.
- S. M. Ahmadi, N. Ahmadi, and M. Shokri, “Analytical Insights into Constant-Roll Condition: Extending the Paradigm to Non-Canonical Models,” 12 2023.
- I. M. Khalatnikov and A. Mezhlumian, “The Classical and quantum cosmology with a complex scalar field,” Phys. Lett. A, vol. 169, pp. 308–312, 1992.
- A. Y. Kamenshchik, I. M. Khalatnikov, and A. V. Toporensky, “Nonminimally coupled complex scalar field in classical and quantum cosmology,” Phys. Lett. B, vol. 357, pp. 36–42, 1995.
- L. Amendola, M. Litterio, F. Occhionero, and I. M. Khalatnikov, “Quantum cosmology with a complex field,” Phys. Rev. D, vol. 49, pp. 1881–1885, 1994.
- D. Scialom and P. Jetzer, “Asymptotic behavior of complex scalar fields in a Friedman-Lemaitre universe,” Phys. Rev. D, vol. 51, pp. 5698–5706, 1995.
- A. Y. Kamenshchik, I. M. Khalatnikov, and A. V. Toporensky, “Complex inflaton field in quantum cosmology,” Int. J. Mod. Phys. D, vol. 6, pp. 649–672, 1997.
- Y. Liu, “Interacting ghost dark energy in complex quintessence theory,” Eur. Phys. J. C, vol. 80, no. 12, p. 1204, 2020.
- B. Carvente, V. Jaramillo, C. Escamilla-Rivera, and D. Núñez, “Observational constraints on complex quintessence with attractive self-interaction,” Mon. Not. Roy. Astron. Soc., vol. 503, no. 3, pp. 4008–4015, 2021.
- J.-A. Gu and W.-Y. P. Hwang, “Can the quintessence be a complex scalar field?,” Phys. Lett. B, vol. 517, pp. 1–6, 2001.
- A. V. Yurov, “Complex field as inflaton and quintessence,” 8 2002.
- A. V. Yurov, “Exact inflationary cosmologies with exit: From an inflaton complex field to an ’anti-inflaton’ one,” Class. Quant. Grav., vol. 18, pp. 3753–3766, 2001.
- W. Buchmüller, V. Domcke, K. Kamada, and K. Schmitz, “Hybrid Inflation in the Complex Plane,” JCAP, vol. 07, p. 054, 2014.
- I. M. Khalatnikov and P. Schiller, “From instanton to inflationary universe,” Phys. Lett. B, vol. 302, pp. 176–182, 1993.
- K.-M. Lee, “Quantum tunnelings with global charge,” Phys. Rev. D, vol. 50, pp. 5333–5342, 1994.
- K. Carrion, J. C. Hidalgo, A. Montiel, and L. E. Padilla, “Complex Scalar Field Reheating and Primordial Black Hole production,” JCAP, vol. 07, p. 001, 2021.
- D. Scialom, “Inflation with a complex scalar field,” Helv. Phys. Acta, vol. 69, pp. 190–193, 1996.
- J. M. Bardeen, “Gauge Invariant Cosmological Perturbations,” Phys. Rev. D, vol. 22, pp. 1882–1905, 1980.
- V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions,” Phys. Rept., vol. 215, pp. 203–333, 1992.
- A. Riotto, “Inflation and the theory of cosmological perturbations,” ICTP Lect. Notes Ser., vol. 14, pp. 317–413, 2003.
- D. Polarski and A. A. Starobinsky, “Spectra of perturbations produced by double inflation with an intermediate matter dominated stage,” Nucl. Phys. B, vol. 385, pp. 623–650, 1992.
- D. Polarski and A. A. Starobinsky, “Isocurvature perturbations in multiple inflationary models,” Phys. Rev. D, vol. 50, pp. 6123–6129, 1994.
- A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations,” Phys. Lett. B, vol. 117, pp. 175–178, 1982.
- A. A. Starobinsky and J. Yokoyama, “Density fluctuations in Brans-Dicke inflation,” in 4th Workshop on General Relativity and Gravitation, p. 381, 11 1994.
- D. Langlois and S. Renaux-Petel, “Perturbations in generalized multi-field inflation,” JCAP, vol. 04, p. 017, 2008.
- A. A. Starobinsky, S. Tsujikawa, and J. Yokoyama, “Cosmological perturbations from multifield inflation in generalized Einstein theories,” Nucl. Phys. B, vol. 610, pp. 383–410, 2001.
- R. K. Sachs and A. M. Wolfe, “Perturbations of a cosmological model and angular variations of the microwave background,” Astrophys. J., vol. 147, pp. 73–90, 1967.
- A. R. Liddle and D. H. Lyth, Cosmological inflation and large scale structure. 2000.
- B. A. Bassett, S. Tsujikawa, and D. Wands, “Inflation dynamics and reheating,” Rev. Mod. Phys., vol. 78, pp. 537–589, 2006.
- L. F. Abbott and M. B. Wise, “Constraints on Generalized Inflationary Cosmologies,” Nucl. Phys. B, vol. 244, pp. 541–548, 1984.
- J. D. Barrow, “Exact inflationary universes with potential minima,” Phys. Rev. D, vol. 49, pp. 3055–3058, 1994.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.