Minimax rates in variance and covariance changepoint testing (2405.07757v2)
Abstract: We study the detection of a change in the covariance matrix of $n$ independent sub-Gaussian random variables of dimension $p$. Our first contribution is to show that $\log\log(8n)$ is the exact minimax testing rate for a change in variance when $p=1$, thereby giving a complete characterization of the problem for univariate data. Our second contribution is to derive a lower bound on the minimax testing rate under the operator norm, taking a certain notion of sparsity into account. In the low- to moderate-dimensional region of the parameter space, we are able to match the lower bound from above with an optimal test based on sparse eigenvalues. In the remaining region of the parameter space, where the dimensionality is high, the minimax lower bound implies that changepoint testing is very difficult. As our third contribution, we propose a computationally feasible variant of the optimal multivariate test for a change in covariance, which is also adaptive to the nominal noise level and the sparsity level of the change.
- Donald W. K. Andrews. Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4):821–856, 1993. ISSN 00129682, 14680262. doi: 10.2307/2951764.
- Patterns of Regime Breakdown Since the French Revolution. Comparative Political Studies, 53(6):923–958, 2020. ISSN 0010-4140. doi: 10.1177/0010414019879953.
- Statistical sightings of better angels: Analysing the distribution of battle-deaths in interstate conflict over time. Journal of Peace Research, 57(2):221–234, 2020. ISSN 0022-3433. doi: 10.1177/0022343319896843.
- A review and comparison of changepoint detection techniques for climate data. Journal of Applied Meteorology and Climatology, 46:900–915, 2007. doi: 10.1175/JAM2493.1.
- Anastasios Pouliezos and G. Stavrakakis. Real Time Fault Monitoring of Industrial Processes. Springer Dordrecht, 1994. ISBN 0792327373. doi: 10.1007/978-94-015-8300-8.
- Doubly-online changepoint detection for monitoring health status during sports activities. The Annals of Applied Statistics, 17(3):2387 – 2409, 2023. doi: 10.1214/22-AOAS1724.
- Minimax rates in sparse, high-dimensional change point detection. The Annals of Statistics, 49(2):1081–1112, 2021. doi: 10.1214/20-AOS1994.
- Robust mean change point testing in high-dimensional data with heavy tails. 2023. doi: 10.48550/arXiv.2305.18987. arXiv preprint.
- High-dimensional change-point detection under sparse alternatives. The Annals of Statistics, 47(4):2051 – 2079, 2019. doi: 10.1214/18-AOS1740.
- Univariate mean change point detection: Penalization, CUSUM and optimality. Electronic Journal of Statistics, 14(1):1917 – 1961, 2020. doi: 10.1214/20-EJS1710.
- Optimal multiple change-point detection for high-dimensional data. Electronic Journal of Statistics, 17(1):1240 – 1315, 2023. doi: 10.1214/23-EJS2126.
- Optimal change-point detection and localization. The Annals of Statistics, 51(4):1586 – 1610, 2023. doi: 10.1214/23-AOS2297.
- Modelling the dynamic dependence structure in multivariate financial time series. Journal of Time Series Analysis, 28(5):763–782, 2007. doi: https://doi.org/10.1111/j.1467-9892.2007.00543.x.
- Asset pricing with a factor-arch covariance structure: Empirical estimates for treasury bills. Journal of Econometrics, 45(1):213–237, 1990. ISSN 0304-4076. doi: https://doi.org/10.1016/0304-4076(90)90099-F.
- Brain covariance selection: better individual functional connectivity models using population prior. In Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2, NIPS’10, page 2334–2342, Red Hook, NY, USA, 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/db576a7d2453575f29eab4bac787b919-Paper.pdf.
- Detecting functional connectivity change points for single-subject fmri data. Frontiers in Computational Neuroscience, 7, 2013. ISSN 1662-5188. doi: 10.3389/fncom.2013.00143.
- Connectivity-based change point detection for large-size functional networks. NeuroImage, 143:353–363, 2016. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2016.09.019.
- Break detection in the covariance structure of multivariate time series models. The Annals of Statistics, 37(6B):4046 – 4087, 2009. doi: 10.1214/09-AOS707.
- Multiple break detection in the correlation structure of random variables. Computational Statistics & Data Analysis, 76:262–282, 2014. ISSN 0167-9473. doi: 10.1016/j.csda.2013.02.031.
- Online change-point detection in high-dimensional covariance structure with application to dynamic networks. Journal of Machine Learning Research, 24(51):1–44, 2023. URL http://jmlr.org/papers/v24/20-1101.html.
- Optimal covariance change point localization in high dimensions. Bernoulli, 27(1):554 – 575, 2021. doi: 10.3150/20-BEJ1249.
- Change point detection in low-rank VAR processes. Bernoulli, 2023. URL https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/62717?confirm=a77e33e1. Advance online publication.
- Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41(4):1780 – 1815, 2013. doi: 10.1214/13-AOS1127.
- Optimal estimation and rank detection for sparse spiked covariance matrices. Probability Theory and Related Fields, 161(3):781–815, 2015. ISSN 1432-2064. doi: 10.1007/s00440-014-0562-z.
- Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association, 108(501):265–277, 2013. doi: 10.1080/01621459.2012.758041.
- Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation. Electronic Journal of Statistics, 10(1):1 – 59, 2016. doi: 10.1214/15-EJS1081.
- Sharp minimax tests for large covariance matrices and adaptation. Electronic Journal of Statistics, 10(2):1927 – 1972, 2016. doi: 10.1214/16-EJS1143.
- Malik Magdon-Ismail. Np-hardness and inapproximability of sparse pca. Information Processing Letters, 126:35–38, 2017. ISSN 0020-0190. doi: 10.1016/j.ipl.2017.05.008.
- High Dimensional Change Point Estimation via Sparse Projection. Journal of the Royal Statistical Society Series B: Statistical Methodology, 80(1):57–83, 2017. ISSN 1369-7412. doi: 10.1111/rssb.12243.
- A direct formulation for sparse pca using semidefinite programming. SIAM Review, 49(3):434–448, 2007. ISSN 00361445. doi: 10.1137/050645506.
- Convex Optimization. Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.
- Convex relaxations for subset selection. 2010. doi: 10.48550/arXiv.1006.3601. arXiv preprint.
- Concentration inequalities and moment bounds for sample covariance operators. Bernoulli, 23(1):110 – 133, 2017. doi: 10.3150/15-BEJ730.
- Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi: 10.1017/9781108231596.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.