Partial information decomposition: redundancy as information bottleneck (2405.07665v2)
Abstract: The partial information decomposition (PID) aims to quantify the amount of redundant information that a set of sources provides about a target. Here, we show that this goal can be formulated as a type of information bottleneck (IB) problem, termed the "redundancy bottleneck" (RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from the sources that best predict the target, without revealing which source provided the information. It can be understood as a generalization of "Blackwell redundancy", which we previously proposed as a principled measure of PID redundancy. The "RB curve" quantifies the prediction--compression tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets of redundant sources to be identified without combinatorial optimization. We provide an efficient iterative algorithm for computing the RB curve.
- P. L. Williams and R. D. Beer, Nonnegative decomposition of multivariate information, arXiv preprint arXiv:1004.2515 (2010).
- A. Kolchinsky, A Novel Approach to the Partial Information Decomposition, Entropy 24, 403 (2022).
- P. L. Williams, Information dynamics: Its theory and application to embodied cognitive systems, Ph.D. (2011).
- N. Tishby, F. Pereira, and W. Bialek, The information bottleneck method, in 37th Allerton Conf on Communication (1999).
- Y. Wang, J. M. L. Ribeiro, and P. Tiwary, Past–future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics, Nature Communications 10, 3573 (2019), publisher: Nature Publishing Group.
- A. Kolchinsky, B. D. Tracey, and D. H. Wolpert, Nonlinear information bottleneck, Entropy 21, 1181 (2019a).
- I. Fischer, The conditional entropy bottleneck, Entropy 22, 999 (2020).
- Z. Goldfeld and Y. Polyanskiy, The information bottleneck problem and its applications in machine learning, IEEE Journal on Selected Areas in Information Theory 1, 19 (2020).
- R. Ahlswede and J. Körner, Source Coding with Side Information and a Converse for Degraded Broadcast Channels, IEEE Transactions on Information Theory , 9 (1975).
- H. Witsenhausen and A. Wyner, A conditional entropy bound for a pair of discrete random variables, IEEE Transactions on Information Theory 21, 493 (1975).
- A. Kolchinsky, B. D. Tracey, and S. Van Kuyk, Caveats for information bottleneck in deterministic scenarios, in ICLR 2019 (2019) arXiv: 1808.07593.
- B. Rodríguez Gálvez, R. Thobaben, and M. Skoglund, The convex information bottleneck lagrangian, Entropy 22, 98 (2020).
- E. Benger, S. Asoodeh, and J. Chen, The cardinality bound on the information bottleneck representations is tight, in 2023 IEEE International Symposium on Information Theory (ISIT) (IEEE, 2023) pp. 1478–1483.
- B. C. Geiger and I. S. Fischer, A comparison of variational bounds for the information bottleneck functional, Entropy 22, 1229 (2020).
- K. A. Murphy and D. S. Bassett, Machine-learning optimized measurements of chaotic dynamical systems via the information bottleneck, Physical Review Letters 132, 197201 (2024).
- N. Slonim, N. Friedman, and N. Tishby, Multivariate Information Bottleneck, Neural Computation 18, 10.1162/neco.2006.18.8.1739 (2006).
- C. Shannon, The lattice theory of information, Transactions of the IRE Professional Group on Information Theory 1, 105 (1953).
- W. McGill, Multivariate information transmission, Transactions of the IRE Professional Group on Information Theory 4, 93 (1954).
- F. M. Reza, An Introduction to Information Theory (Dover Publications, Inc, 1961).
- H. K. Ting, On the amount of information, Theory of Probability & Its Applications 7, 439 (1962).
- T. Han, Linear dependence structure of the entropy space, Information and Control 29, 337 (1975).
- R. W. Yeung, A new outlook on shannon’s information measures, IEEE transactions on information theory 37, 466 (1991).
- A. J. Bell, The co-information lattice, in Proceedings of the Fifth International Workshop on Independent Component Analysis and Blind Signal Separation: ICA, Vol. 2003 (2003).
- A. F. Gomes and M. A. Figueiredo, Orders between channels and implications for partial information decomposition, Entropy 25, 975 (2023).
- V. Griffith and C. Koch, Quantifying synergistic mutual information, in Guided Self-Organization: Inception (Springer, 2014) pp. 159–190.
- V. Griffith and T. Ho, Quantifying redundant information in predicting a target random variable, Entropy 17, 4644 (2015).
- N. Bertschinger and J. Rauh, The blackwell relation defines no lattice, in 2014 IEEE International Symposium on Information Theory (IEEE, 2014) pp. 2479–2483.
- D. Blackwell, Equivalent comparisons of experiments, The annals of mathematical statistics , 265 (1953).
- P. Venkatesh and G. Schamberg, Partial information decomposition via deficiency for multivariate gaussians, in 2022 IEEE International Symposium on Information Theory (ISIT) (IEEE, 2022) pp. 2892–2897.
- T. Mages, E. Anastasiadi, and C. Rohner, Non-negative decomposition of multivariate information: From minimum to blackwell specific information, 10.20944/preprints202403.0285.v2 (2024).
- L. Le Cam, Sufficiency and approximate sufficiency, The Annals of Mathematical Statistics , 1419 (1964).
- P. K. Banerjee and G. Montufar, The Variational Deficiency Bottleneck, in 2020 International Joint Conference on Neural Networks (IJCNN) (IEEE, Glasgow, United Kingdom, 2020) pp. 1–8.
- I. Csiszár and F. Matus, Information projections revisited, IEEE Transactions on Information Theory 49, 1474 (2003).
- N. Ay, Confounding ghost channels and causality: a new approach to causal information flows, Vietnam journal of mathematics 49, 547 (2021).
- A. Kolchinsky and L. M. Rocha, Prediction and modularity in dynamical systems, arXiv preprint arXiv:1106.3703 (2011).
- S. Hidaka and M. Oizumi, Fast and exact search for the partition with minimal information loss, PLoS One 13, e0201126 (2018).
- L. E. Dubins, On extreme points of convex sets, Journal of Mathematical Analysis and Applications 5, 237 (1962).
- T. M. Cover and J. A. Thomas, Elements of information theory (John Wiley & Sons, 2006).
- R. Timo, A. Grant, and G. Kramer, Lossy broadcasting with complementary side information, IEEE Transactions on Information Theory 59, 104 (2012).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.