The Sample Complexity of Stackelberg Games (2405.06977v1)
Abstract: Stackelberg games (SGs) constitute the most fundamental and acclaimed models of strategic interactions involving some form of commitment. Moreover, they form the basis of more elaborate models of this kind, such as, e.g., Bayesian persuasion and principal-agent problems. Addressing learning tasks in SGs and related models is crucial to operationalize them in practice, where model parameters are usually unknown. In this paper, we revise the sample complexity of learning an optimal strategy to commit to in SGs. We provide a novel algorithm that (i) does not require any of the limiting assumptions made by state-of-the-art approaches and (ii) deals with a trade-off between sample complexity and termination probability arising when leader's strategies representation has finite precision. Such a trade-off has been completely neglected by existing algorithms and, if not properly managed, it may result in them using exponentially-many samples. Our algorithm requires novel techniques, which also pave the way to addressing learning problems in other models with commitment ubiquitous in the real world.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.