Fast-moving stars around an intermediate-mass black hole in Omega Centauri (2405.06015v3)
Abstract: Black holes have been found over a wide range of masses, from stellar remnants with masses of 5-150 solar masses (Msun), to those found at the centers of galaxies with $M>105$ Msun. However, only a few debated candidate black holes exist between 150 and $105$ Msun. Determining the population of these intermediate-mass black holes is an important step towards understanding supermassive black hole formation in the early universe. Several studies have claimed the detection of a central black hole in $\omega$ Centauri, the Milky Way's most massive globular cluster. However, these studies have been questioned due to the possible mass contribution of stellar mass black holes, their sensitivity to the cluster center, and the lack of fast-moving stars above the escape velocity. Here we report observations of seven fast-moving stars in the central 3 arcseconds (0.08 pc) of $\omega$ Centauri. The velocities of the fast-moving stars are significantly higher than the expected central escape velocity of the star cluster, so their presence can only be explained by being bound to a massive black hole. From the velocities alone, we can infer a firm lower limit of the black hole mass of $\sim$8,200 Msun, making this a compelling candidate for an intermediate-mass black hole in the local universe.
- \bibcommenthead
- Intermediate-Mass Black Holes. ARA&A 58, 257–312 (2020).
- The Assembly of the First Massive Black Holes. ARA&A 58, 27–97 (2020).
- Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω𝜔\omegaitalic_ω Centauri. ApJ 676, 1008–1015 (2008).
- Noyola, E. et al. Very Large Telescope Kinematics for Omega Centauri: Further Support for a Central Black Hole. ApJ 719, L60–L64 (2010).
- Baumgardt, H. N -body modelling of globular clusters: masses, mass-to-light ratios and intermediate-mass black holes. MNRAS 464, 2174–2202 (2017).
- New Limits on an Intermediate-Mass Black Hole in Omega Centauri. I. Hubble Space Telescope Photometry and Proper Motions. ApJ 710, 1032–1062 (2010).
- New Limits on an Intermediate-Mass Black Hole in Omega Centauri. II. Dynamical Models. ApJ 710, 1063–1088 (2010).
- The effect of stellar-mass black holes on the central kinematics of ω𝜔\omegaitalic_ω Cen: a cautionary tale for IMBH interpretations. MNRAS 482, 4713–4725 (2019).
- Baumgardt, H. et al. No evidence for intermediate-mass black holes in the globular clusters ω𝜔\omegaitalic_ω Cen and NGC 6624. MNRAS 488, 5340–5351 (2019).
- ω𝜔\omegaitalic_ω Centauri - a former nucleus of a dissolved dwarf galaxy? New evidence from Strömgren photometry. A&A 362, 895–909 (2000).
- Identification of the long stellar stream of the prototypical massive globular cluster ω𝜔\omegaitalic_ω Centauri. Nature Astronomy 3, 667–672 (2019).
- Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. MNRAS 505, 5957–5977 (2021).
- Nitschai, M. S. et al. oMEGACat I. MUSE Spectroscopy of 300,000 Stars within the Half-light Radius of ω𝜔\omegaitalic_ω Centauri. ApJ 958, 8 (2023).
- Häberle, M. et al. oMEGACat II – Photometry and proper motions for 1.4 million stars in Omega Centauri and its rotation in the plane of the sky. arXiv e-prints arXiv:2404.03722 (2024).
- Goldsbury, R. et al. The ACS Survey of Galactic Globular Clusters. X. New Determinations of Centers for 65 Clusters. AJ 140, 1830–1837 (2010).
- A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. MNRAS 478, 1520–1557 (2018).
- Gillessen, S. et al. An Update on Monitoring Stellar Orbits in the Galactic Center. ApJ 837, 30 (2017).
- A synthetic view on structure and evolution of the Milky Way. A&A 409, 523–540 (2003).
- Gehrels, N. Confidence Limits for Small Numbers of Events in Astrophysical Data. ApJ 303, 336 (1986).
- Origin of the system of globular clusters in the Milky Way. A&A 630, L4 (2019).
- The accreted nuclear clusters of the Milky Way. MNRAS 500, 2514–2524 (2021).
- A 20,000 Msolar Black Hole in the Stellar Cluster G1. ApJ 578, L41–L45 (2002).
- An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations. ApJ 634, 1093–1102 (2005).
- Pechetti, R. et al. Detection of a 100,000 M ⊙ black hole in M31’s Most Massive Globular Cluster: A Tidally Stripped Nucleus. ApJ 924, 48 (2022).
- Bacon, R. et al. McLean, I. S., Ramsay, S. K. & Takami, H. (eds) The MUSE second-generation VLT instrument. (eds McLean, I. S., Ramsay, S. K. & Takami, H.) Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 773508 (2010). 2211.16795.
- Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. A&A 661, A82 (2022).
- GRAVITY Collaboration et al. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. A&A 602, A94 (2017).
- Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. PASP 135, 028001 (2023).
- Davies, R. et al. MICADO: The Multi-Adaptive Optics Camera for Deep Observations. The Messenger 182, 17–21 (2021).
- Rigaut, F. et al. MAVIS on the VLT: A Powerful, Synergistic ELT Complement in the Visible. The Messenger 185, 7–11 (2021).
- Jalali, B. et al. A Dynamical N-body model for the central region of ω𝜔\omegaitalic_ω Centauri. A&A 538, A19 (2012).
- Bellini, A. et al. The State-of-the-art HST Astro-photometric Analysis of the Core of ω𝜔\omegaitalic_ω Centauri. I. The Catalog. ApJ 842, 6 (2017).
- Radial anisotropy in ω𝜔\omegaitalic_ω Cen limiting the room for an intermediate-mass black hole. MNRAS 468, 4429–4440 (2017).
- Aros, F. I. et al. Dynamical modelling of globular clusters: challenges for the robust determination of IMBH candidates. MNRAS 499, 4646–4665 (2020).
- Pechetti, R. et al. ω𝜔\omegaitalic_ω Centauri: a MUSE discovery of a counter-rotating core. MNRAS 528, 4941–4957 (2024).
- Haggard, D. et al. A Deep Chandra X-Ray Limit on the Putative IMBH in Omega Centauri. ApJ 773, L31 (2013).
- Tremou, E. et al. The MAVERIC Survey: Still No Evidence for Accreting Intermediate-mass Black Holes in Globular Clusters. ApJ 862, 16 (2018).
- Using the Fundamental Plane of black hole activity to distinguish X-ray processes from weakly accreting black holes. MNRAS 419, 267–286 (2012).
- Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. A&A 636, A73 (2020).
- Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. ApJ 930, L16 (2022).
- GRAVITY Collaboration et al. The flux distribution of Sgr A*. A&A 638, A2 (2020).
- Compact jets dominate the continuum emission in low-luminosity active galactic nuclei. A&A 670, A22 (2023).
- Bellini, A. et al. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. I. Sample Selection, Data Reduction, and NGC 7078 Results. ApJ 797, 115 (2014).
- Bellini, A. et al. The HST Large Programme on ω𝜔\omegaitalic_ω Centauri. II. Internal Kinematics. ApJ 853, 86 (2018).
- Libralato, M. et al. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Cluster. VI. Improved Data Reduction and Internal-kinematic Analysis of NGC 362. ApJ 861, 99 (2018).
- Libralato, M. et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. XXIII. Proper-motion Catalogs and Internal Kinematics. ApJ 934, 150 (2022).
- Gaia Collaboration et al. Gaia Focused Product Release: Sources from Service Interface Function image analysis. Half a million new sources in omega Centauri. A&A 680, A35 (2023).
- Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. MNRAS 427, 127–145 (2012).
- Weatherford, N. C. et al. Stellar Escape from Globular Clusters. I. Escape Mechanisms and Properties at Ejection. ApJ 946, 104 (2023).
- Runaway and Hypervelocity Stars from Compact Object Encounters in Globular Clusters. ApJ 953, 19 (2023).
- Kamann, S. et al. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars. MNRAS 473, 5591–5616 (2018).
- Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Cluster. II. Kinematic Profiles and Maps. ApJ 803, 29 (2015).
- Gaia Collaboration et al. Gaia Data Release 3. Summary of the content and survey properties. A&A 674, A1 (2023).
- Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001).
- Evidence for a bottom-light initial mass function in massive star clusters. MNRAS 521, 3991–4008 (2023).
- The multi-gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems I. The formalism. A&A 285, 723–738 (1994).
- Harris, W. E. A Catalog of Parameters for Globular Clusters in the Milky Way. AJ 112, 1487 (1996).
- Harris, W. E. A New Catalog of Globular Clusters in the Milky Way. arXiv e-prints arXiv:1012.3224 (2010).
- The dynamical distance and intrinsic structure of the globular cluster ω𝜔\omegaitalic_ω Centauri. A&A 445, 513–543 (2006).
- The Parallax of ω𝜔\omegaitalic_ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant. ApJ 908, L5 (2021).
- emcee: The MCMC Hammer. PASP 125, 306 (2013).
- King, I. The structure of star clusters. I. an empirical density law. AJ 67, 471 (1962).
- Häberle, Maximilian. Data from Paper “oMEGACat II - Photometry and proper motions for 1.4 million stars in Omega Centauri and its rotation in the plane of the sky” (2024). URL http://archive.stsci.edu/doi/resolve/resolve.html?doi=10.17909/26qj-g090.
- Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science and Engineering 9, 90–95 (2007).
- Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272 (2020).
- Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
- Astropy Collaboration et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. ApJ 935, 167 (2022).
- Accelerating NBODY6 with graphics processing units. MNRAS 424, 545–552 (2012).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.