Papers
Topics
Authors
Recent
2000 character limit reached

Absolute zeta functions and periodicity of quantum walks on cycles (2405.05995v1)

Published 9 May 2024 in quant-ph, math-ph, math.CO, math.MP, and math.PR

Abstract: The quantum walk is a quantum counterpart of the classical random walk. On the other hand, absolute zeta functions can be considered as zeta functions over $\mathbb{F}_1$. This study presents a connection between quantum walks and absolute zeta functions. In this paper, we focus on Hadamard walks and $3$-state Grover walks on cycle graphs. The Hadamard walks and the Grover walks are typical models of the quantum walks. We consider the periods and zeta functions of such quantum walks. Moreover, we derive the explicit forms of the absolute zeta functions of corresponding zeta functions. Also, it is shown that our zeta functions of quantum walks are absolute automorphic forms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.