Quasielastic Lepton-Nucleus Scattering and the Correlated Fermi Gas Model (2405.05342v2)
Abstract: The neutrino research program in the coming decades will require improved precision. A major source of uncertainty is the interaction of neutrinos with nuclei that serve as targets for such experiments. Broadly speaking, this interaction often depends, e.g., for charge-current quasi-elastic scattering, on the combination of nucleon physics", expressed by form factors, and
nuclear physics", expressed by a nuclear model. It is important to get a good handle on both. We present a fully analytic implementation of the Correlated Fermi Gas Model for electron-nucleus and charge-current quasi-elastic neutrino-nucleus scattering. The implementation is used to compare separately form factors and nuclear model effects for both electron-carbon and neutrino-carbon scattering data.
- A New parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl., 159:127–132, 2006, hep-ex/0602017.
- Parametrization and applications of the low-Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT nucleon vector form factors. Phys. Rev. D, 102(7):074012, 2020, 2003.13640.
- Joanna Ewa Sobczyk. Intercomparison of lepton-nucleus scattering models in the quasielastic region. Phys. Rev. C, 96(4):045501, 2017, 1706.06739.
- Joanna Ewa Sobczyk. Nuclear effects in neutrino-nucleus interactions: the role of spectral functions. PhD thesis, U. Valencia (main), 2019.
- Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A, 579:493–517, 1994.
- Electroweak nuclear response in quasi-elastic regime. Phys. Rev. Lett., 105:132301, 2010, 1006.4783.
- Final state interactions in the response of nuclear matter. Phys. Rev. C, 67:014605, 2003, nucl-th/0201019.
- Improving the accuracy of neutrino energy reconstruction in charged-current quasielastic scattering off nuclear targets. Phys. Rev. D, 91(3):033005, 2015, 1404.5687.
- Many body approach to the inclusive (e, e-prime) reaction from the quasielastic to the Delta excitation region. Nucl. Phys. A, 627:543–598, 1997, nucl-th/9711009.
- Inclusive quasi-elastic neutrino reactions. Phys. Rev. C, 70:055503, 2004, nucl-th/0408005. [Erratum: Phys.Rev.C 72, 019902 (2005)].
- In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies. Annals Phys., 383:455–496, 2017, 1701.03628.
- P. Fernandez de Cordoba and E. Oset. Semiphenomenological approach to nucleon properties in nuclear matter. Phys. Rev. C, 46:1697–1709, 1992.
- Transport-theoretical Description of Nuclear Reactions. Phys. Rept., 512:1–124, 2012, 1106.1344.
- Neutrino-Induced Reactions on Nuclei. Phys. Rev. C, 94(3):035502, 2016, 1605.09391.
- A. A. Aguilar-Arevalo et al. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev. D, 81:092005, 2010, 1002.2680.
- Model independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering. Phys. Rev. D, 84:073006, 2011, 1108.0423.
- Model-independent determination of the axial mass parameter in quasielastic antineutrino-nucleon scattering. Phys. Rev. D, 92(11):113011, 2015, 1510.05652.
- Nuclear Fermi momenta from quasielastic electron scattering. Phys. Rev. Lett., 26:445–448, 1971.
- K. S. Egiyan et al. Observation of nuclear scaling in the A(e, e-prime) reaction at x(B) greater than 1. Phys. Rev. C, 68:014313, 2003, nucl-ex/0301008.
- K. S. Egiyan et al. Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei. Phys. Rev. Lett., 96:082501, 2006, nucl-ex/0508026.
- N. Fomin et al. New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett., 108:092502, 2012, 1107.3583.
- A. Tang et al. n-p short range correlations from (p, 2p + n) measurements. AIP Conf. Proc., 549(1):451–454, 2000, nucl-ex/0009009.
- Evidence for the strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett., 97:162504, 2006, nucl-th/0604012.
- R. Shneor et al. Investigation of proton-proton short-range correlations via the C-12(e, e-prime pp) reaction. Phys. Rev. Lett., 99:072501, 2007, nucl-ex/0703023.
- R. Subedi et al. Probing Cold Dense Nuclear Matter. Science, 320:1476–1478, 2008, 0908.1514.
- I. Korover et al. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the H4e(e,e′pN)superscript𝐻4𝑒𝑒superscript𝑒′𝑝𝑁{}^{4}He(e,e^{\prime}pN)start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT italic_H italic_e ( italic_e , italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_p italic_N ) Triple-Coincidence Reaction. Phys. Rev. Lett., 113(2):022501, 2014, 1401.6138.
- Symmetry Energy of Nucleonic Matter With Tensor Correlations. Phys. Rev. C, 91(2):025803, 2015, 1408.0772.
- Nuclear Equation of State and Single-nucleon Potential from Gogny-like Energy Density Functionals Encapsulating Effects of Nucleon-nucleon Short-range Correlations. 10 2022, 2210.10924.
- Realistic finite-temperature effects in neutron star merger simulations. Phys. Rev. D, 104(6):063016, 2021, 2104.07226.
- Finite-temperature extension for cold neutron star equations of state. Astrophys. J., 875(1):12, 2019, 1902.10735.
- Analysis of Neutron Stars Observations Using a Correlated Fermi Gas Model, 8 2016, 1608.00487.
- B. Schmookler et al. Modified structure of protons and neutrons in correlated pairs. Nature, 566(7744):354–358, 2019, 2004.12065.
- Luis Alvarez-Ruso et al. Recent highlights from GENIE v3. Eur. Phys. J. ST, 230(24):4449–4467, 2021, 2106.09381.
- Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D, 93(11):113015, 2016, 1603.03048.
- T. Cai et al. Measurement of the axial vector form factor from antineutrino–proton scattering. Nature, 614(7946):48–53, 2023.
- Nucleon axial structure from lattice QCD. JHEP, 05:126, 2020, 1911.13150.
- Precision nucleon charges and form factors using (2+1)-flavor lattice QCD. Phys. Rev. D, 105(5):054505, 2022, 2103.05599.
- Isovector axial form factor of the nucleon from lattice QCD. Phys. Rev. D, 106(7):074503, 2022, 2207.03440.
- Nucleon isovector axial form factors. Phys. Rev. D, 109(1):014503, 2024, 2305.11330.
- Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point. Phys. Rev. D, 109(3):034503, 2024, 2309.05774.
- An Archive for quasi-elastic electron-nucleus scattering data. 3 2006, nucl-ex/0603032.
- Quasielastic Electron Nucleus Scattering Archive. http://discovery.phys.virginia.edu/research/groups/qes-archive.
- R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
- Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization. Eur. Phys. J. C, 53:349–354, 2008, 0708.1946.
- Confronting the axial-vector form factor from lattice QCD with MINERvA antineutrino-proton data. Phys. Rev. D, 108(7):074514, 2023, 2307.14920.
- Elastic electron-deuteron scattering and the electric neutron form factor at four-momentum transfers 5fm<−2q2<14{}^{-2}<q^{2}<14start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT < italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < 14fm-2. Nucl. Phys. B, 32:221–237, 1971.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.