2000 character limit reached
The Harnack inequality fails for nonlocal kinetic equations (2405.05223v2)
Published 8 May 2024 in math.AP and math.PR
Abstract: We prove that the Harnack inequality fails for nonlocal kinetic equations. Such equations arise as linearized models for the Boltzmann equation without cutoff and are of hypoelliptic type. We provide a counterexample for the simplest equation in this theory, the fractional Kolmogorov equation. Our result reflects a purely nonlocal phenomenon since the Harnack inequality holds true for local kinetic equations like the Kolmogorov equation.
- F. Abedin and G. Tralli. Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form. Arch. Ration. Mech. Anal., 233(2):867–900, 2019.
- A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients. Commun. Contemp. Math., 21(7):1850057, 17, 2019.
- Harnack inequalities for kinetic integral equations. Researchgate: 10.13140/RG.2.2.27376.84487, 2024.
- Harnack inequalities for kinetic integral equations. arXiv:2401.14182, 2024.
- Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates. arXiv:2401.14182, 2024.
- Weak solutions to Kolmogorov-Fokker-Planck equations: regularity, existence and uniqueness. arXiv:2403.17464, 2024.
- R. Bass and Z.-Q. Chen. Regularity of harmonic functions for a class of singular stable-like processes. Math. Z., 266(3):489–503, 2010.
- R. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc., 357(2):837–850, 2005.
- R. Bass and D. Levin. Harnack inequalities for jump processes. Potential Anal., 17(4):375–388, 2002.
- K. Bogdan and P. Sztonyk. Harnack’s inequality for stable Lévy processes. Potential Anal., 22(2):133–150, 2005.
- L. Caffarelli and L. Silvestre. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math., 62(5):597–638, 2009.
- Nonlocal Harnack inequalities. J. Funct. Anal., 267(6):1807–1836, 2014.
- Local behavior of fractional p𝑝pitalic_p-minimizers. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33(5):1279–1299, 2016.
- H. Chang-Lara and G. Dávila. Hölder estimates for non-local parabolic equations with critical drift. J. Differential Equations, 260(5):4237–4284, 2016.
- Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d𝑑ditalic_d-sets. Stochastic Process. Appl., 108(1):27–62, 2003.
- Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. J. Math. Pures Appl. (9), 125:1–42, 2019.
- Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc., 22(11):3747–3803, 2020.
- Harnack inequality for nonlocal problems with non-standard growth. Math. Ann., 386:533–550, 2023.
- Z.-Q. Chen and X. Zhang. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators. J. Math. Pures Appl. (9), 116:52–87, 2018.
- M. Cozzi. Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal., 272(11):4762–4837, 2017.
- Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19(1):253–295, 2019.
- J. Guerand and C. Mouhot. Quantitative De Giorgi methods in kinetic theory. J. Éc. polytech. Math., 9:1159–1181, 2022.
- Hörmander’s hypoelliptic theorem for nonlocal operators. J. Theoret. Probab., 34(4):1870–1916, 2021.
- Schauder estimates for nonlocal kinetic equations and applications. J. Math. Pures Appl. (9), 140:139–184, 2020.
- L. Huang and S. Menozzi. A parametrix approach for some degenerate stable driven SDEs. Ann. Inst. Henri Poincaré Probab. Stat., 52(4):1925–1975, 2016.
- Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT estimates for degenerate non-local Kolmogorov operators. J. Math. Pures Appl. (9), 121:162–215, 2019.
- Decay estimates for large velocities in the Boltzmann equation without cutoff. J. Éc. polytech. Math., 7:143–184, 2020.
- C. Imbert and L. Silvestre. Regularity for the Boltzmann equation conditional to macroscopic bounds. EMS Surv. Math. Sci., 7(1):117–172, 2020.
- C. Imbert and L. Silvestre. The weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math. Soc., 22(2):507–592, 2020.
- C. Imbert and L. Silvestre. The Schauder estimate for kinetic integral equations. Anal. PDE, 14(1):171–204, 2021.
- C. Imbert and L. Silvestre. Global regularity estimates for the Boltzmann equation without cut-off. J. Amer. Math. Soc., 35(3):625–703, 2022.
- M. Kassmann. The classical Harnack inequality fails for non-local operators. Preprint No. 360, Sonderforschungsbereich 611, Universität Bonn, 2007.
- M. Kassmann. A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris, 349(11-12):637–640, 2011.
- M. Kassmann and M. Weidner. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531, Anal. PDE, accepted for publication, 2022.
- M. Kassmann and M. Weidner. The parabolic Harnack inequality for nonlocal equations. arXiv:2303.05975, Duke Math J., accepted for publication, 2023.
- S. Kitano. Harnack inequalities and Hölder estimates for fully nonlinear integro-differential equations with weak scaling conditions. J. Differential Equations, 376:714–749, 2023.
- A. Kogoj and S. Polidoro. Harnack inequality for hypoelliptic second order partial differential operators. Potential Anal., 45(3):545–555, 2016.
- E. Lanconelli and S. Polidoro. On a class of hypoelliptic evolution operators. volume 52, pages 29–63. 1994. Partial differential equations, II (Turin, 1993).
- N. Landkof. Foundations of modern potential theory, volume Band 180 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy.
- A. Loher. Quantitative Schauder estimates for hypoelliptic equations. arXiv:2305.00463, 2023.
- A. Loher. Local behaviour of non-local hypoelliptic equations: divergence form. arXiv:2404.05612, 2024.
- A. Loher. Quantitative De Giorgi methods in kinetic theory for non-local operators. J. Funct. Anal., 286(6):Paper No. 110312, 67, 2024.
- J. Malmquist and M. Murugan. Counterexamples to elliptic Harnack inequality for isotropic unimodal Lévy processes. arXiv:2209.09778, 2024.
- C. Mouhot. De Giorgi–Nash–Moser and Hörmander theories: new interplays. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, pages 2467–2493. World Sci. Publ., Hackensack, NJ, 2018.
- L. Niebel. Kinetic maximal Lμp(Lp)superscriptsubscript𝐿𝜇𝑝superscript𝐿𝑝L_{\mu}^{p}(L^{p})italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT )-regularity for the fractional Kolmogorov equation with variable density. Nonlinear Anal., 214:Paper No. 112517, 21, 2022.
- L. Niebel and R. Zacher. Kinetic maximal L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-regularity for the (fractional) Kolmogorov equation. J. Evol. Equ., 21(3):3585–3612, 2021.
- L. Niebel and R. Zacher. Kinetic maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity with temporal weights and application to quasilinear kinetic diffusion equations. J. Differential Equations, 307:29–82, 2022.
- A. Pascucci and S. Polidoro. On the Harnack inequality for a class of hypoelliptic evolution equations. Trans. Amer. Math. Soc., 356(11):4383–4394, 2004.
- M. Riesz. Intégrales de Riemann-Liouville et potentiels. Acta Litt. Sci. Szeged, 9:1–42, 1938.
- L. Silvestre. A new regularization mechanism for the Boltzmann equation without cut-off. Comm. Math. Phys., 348(1):69–100, 2016.
- L. Stokols. Hölder continuity for a family of nonlocal hypoelliptic kinetic equations. SIAM J. Math. Anal., 51(6):4815–4847, 2019.
- M. Strömqvist. Harnack’s inequality for parabolic nonlocal equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36(6):1709–1745, 2019.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.