Papers
Topics
Authors
Recent
2000 character limit reached

The Harnack inequality fails for nonlocal kinetic equations (2405.05223v2)

Published 8 May 2024 in math.AP and math.PR

Abstract: We prove that the Harnack inequality fails for nonlocal kinetic equations. Such equations arise as linearized models for the Boltzmann equation without cutoff and are of hypoelliptic type. We provide a counterexample for the simplest equation in this theory, the fractional Kolmogorov equation. Our result reflects a purely nonlocal phenomenon since the Harnack inequality holds true for local kinetic equations like the Kolmogorov equation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. F. Abedin and G. Tralli. Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form. Arch. Ration. Mech. Anal., 233(2):867–900, 2019.
  2. A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients. Commun. Contemp. Math., 21(7):1850057, 17, 2019.
  3. Harnack inequalities for kinetic integral equations. Researchgate: 10.13140/RG.2.2.27376.84487, 2024.
  4. Harnack inequalities for kinetic integral equations. arXiv:2401.14182, 2024.
  5. Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates. arXiv:2401.14182, 2024.
  6. Weak solutions to Kolmogorov-Fokker-Planck equations: regularity, existence and uniqueness. arXiv:2403.17464, 2024.
  7. R. Bass and Z.-Q. Chen. Regularity of harmonic functions for a class of singular stable-like processes. Math. Z., 266(3):489–503, 2010.
  8. R. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc., 357(2):837–850, 2005.
  9. R. Bass and D. Levin. Harnack inequalities for jump processes. Potential Anal., 17(4):375–388, 2002.
  10. K. Bogdan and P. Sztonyk. Harnack’s inequality for stable Lévy processes. Potential Anal., 22(2):133–150, 2005.
  11. L. Caffarelli and L. Silvestre. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math., 62(5):597–638, 2009.
  12. Nonlocal Harnack inequalities. J. Funct. Anal., 267(6):1807–1836, 2014.
  13. Local behavior of fractional p𝑝pitalic_p-minimizers. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33(5):1279–1299, 2016.
  14. H. Chang-Lara and G. Dávila. Hölder estimates for non-local parabolic equations with critical drift. J. Differential Equations, 260(5):4237–4284, 2016.
  15. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d𝑑ditalic_d-sets. Stochastic Process. Appl., 108(1):27–62, 2003.
  16. Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. J. Math. Pures Appl. (9), 125:1–42, 2019.
  17. Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc., 22(11):3747–3803, 2020.
  18. Harnack inequality for nonlocal problems with non-standard growth. Math. Ann., 386:533–550, 2023.
  19. Z.-Q. Chen and X. Zhang. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators. J. Math. Pures Appl. (9), 116:52–87, 2018.
  20. M. Cozzi. Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal., 272(11):4762–4837, 2017.
  21. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19(1):253–295, 2019.
  22. J. Guerand and C. Mouhot. Quantitative De Giorgi methods in kinetic theory. J. Éc. polytech. Math., 9:1159–1181, 2022.
  23. Hörmander’s hypoelliptic theorem for nonlocal operators. J. Theoret. Probab., 34(4):1870–1916, 2021.
  24. Schauder estimates for nonlocal kinetic equations and applications. J. Math. Pures Appl. (9), 140:139–184, 2020.
  25. L. Huang and S. Menozzi. A parametrix approach for some degenerate stable driven SDEs. Ann. Inst. Henri Poincaré Probab. Stat., 52(4):1925–1975, 2016.
  26. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT estimates for degenerate non-local Kolmogorov operators. J. Math. Pures Appl. (9), 121:162–215, 2019.
  27. Decay estimates for large velocities in the Boltzmann equation without cutoff. J. Éc. polytech. Math., 7:143–184, 2020.
  28. C. Imbert and L. Silvestre. Regularity for the Boltzmann equation conditional to macroscopic bounds. EMS Surv. Math. Sci., 7(1):117–172, 2020.
  29. C. Imbert and L. Silvestre. The weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math. Soc., 22(2):507–592, 2020.
  30. C. Imbert and L. Silvestre. The Schauder estimate for kinetic integral equations. Anal. PDE, 14(1):171–204, 2021.
  31. C. Imbert and L. Silvestre. Global regularity estimates for the Boltzmann equation without cut-off. J. Amer. Math. Soc., 35(3):625–703, 2022.
  32. M. Kassmann. The classical Harnack inequality fails for non-local operators. Preprint No. 360, Sonderforschungsbereich 611, Universität Bonn, 2007.
  33. M. Kassmann. A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris, 349(11-12):637–640, 2011.
  34. M. Kassmann and M. Weidner. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531, Anal. PDE, accepted for publication, 2022.
  35. M. Kassmann and M. Weidner. The parabolic Harnack inequality for nonlocal equations. arXiv:2303.05975, Duke Math J., accepted for publication, 2023.
  36. S. Kitano. Harnack inequalities and Hölder estimates for fully nonlinear integro-differential equations with weak scaling conditions. J. Differential Equations, 376:714–749, 2023.
  37. A. Kogoj and S. Polidoro. Harnack inequality for hypoelliptic second order partial differential operators. Potential Anal., 45(3):545–555, 2016.
  38. E. Lanconelli and S. Polidoro. On a class of hypoelliptic evolution operators. volume 52, pages 29–63. 1994. Partial differential equations, II (Turin, 1993).
  39. N. Landkof. Foundations of modern potential theory, volume Band 180 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy.
  40. A. Loher. Quantitative Schauder estimates for hypoelliptic equations. arXiv:2305.00463, 2023.
  41. A. Loher. Local behaviour of non-local hypoelliptic equations: divergence form. arXiv:2404.05612, 2024.
  42. A. Loher. Quantitative De Giorgi methods in kinetic theory for non-local operators. J. Funct. Anal., 286(6):Paper No. 110312, 67, 2024.
  43. J. Malmquist and M. Murugan. Counterexamples to elliptic Harnack inequality for isotropic unimodal Lévy processes. arXiv:2209.09778, 2024.
  44. C. Mouhot. De Giorgi–Nash–Moser and Hörmander theories: new interplays. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, pages 2467–2493. World Sci. Publ., Hackensack, NJ, 2018.
  45. L. Niebel. Kinetic maximal Lμp⁢(Lp)superscriptsubscript𝐿𝜇𝑝superscript𝐿𝑝L_{\mu}^{p}(L^{p})italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT )-regularity for the fractional Kolmogorov equation with variable density. Nonlinear Anal., 214:Paper No. 112517, 21, 2022.
  46. L. Niebel and R. Zacher. Kinetic maximal L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-regularity for the (fractional) Kolmogorov equation. J. Evol. Equ., 21(3):3585–3612, 2021.
  47. L. Niebel and R. Zacher. Kinetic maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity with temporal weights and application to quasilinear kinetic diffusion equations. J. Differential Equations, 307:29–82, 2022.
  48. A. Pascucci and S. Polidoro. On the Harnack inequality for a class of hypoelliptic evolution equations. Trans. Amer. Math. Soc., 356(11):4383–4394, 2004.
  49. M. Riesz. Intégrales de Riemann-Liouville et potentiels. Acta Litt. Sci. Szeged, 9:1–42, 1938.
  50. L. Silvestre. A new regularization mechanism for the Boltzmann equation without cut-off. Comm. Math. Phys., 348(1):69–100, 2016.
  51. L. Stokols. Hölder continuity for a family of nonlocal hypoelliptic kinetic equations. SIAM J. Math. Anal., 51(6):4815–4847, 2019.
  52. M. Strömqvist. Harnack’s inequality for parabolic nonlocal equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36(6):1709–1745, 2019.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.