Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts (2405.04198v1)

Published 7 May 2024 in cs.CR

Abstract: AI technologies have become more widely adopted in wireless communications. As an emerging type of AI technologies, the generative artificial intelligence (GAI) gains lots of attention in communication security. Due to its powerful learning ability, GAI models have demonstrated superiority over conventional AI methods. However, GAI still has several limitations, including high computational complexity and limited adaptability. Mixture of Experts (MoE), which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions. Firstly, we review GAI model's applications in physical layer communication security, discuss limitations, and explore how MoE can help GAI overcome these limitations. Furthermore, we propose an MoE-enabled GAI framework for network optimization problems for communication security. To demonstrate the framework's effectiveness, we provide a case study in a cooperative friendly jamming scenario. The experimental results show that the MoE-enabled framework effectively assists the GAI algorithm, solves its limitations, and enhances communication security.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. R. Liao, H. Wen, F. Pan, H. Song, A. Xu, and Y. Jiang, “A novel physical layer authentication method with convolutional neural network,” in Proceedings of IEEE International Conference on Artificial Intelligence and Computer Applications.   IEEE, 2019, pp. 231–235.
  2. X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iterative decoders of ldpc codes via recurrent quantized neural networks,” IEEE Transactions on Communications, vol. 68, no. 7, pp. 3963–3974, 2020.
  3. J. Wang, H. Du, D. Niyato, J. Kang, S. Cui, X. Shen, and P. Zhang, “Generative ai for integrated sensing and communication: Insights from the physical layer perspective,” arXiv preprint arXiv:2310.01036, 2023.
  4. Y. Cai, F. Song, Y. Xu, X. Liu, X. Zhang, and H. Han, “Spectrum waterfall completion in jamming enviroment: A general adversarial networks method,” in Proceedings of IEEE 9th Joint International Information Technology and Artificial Intelligence Conference, vol. 9.   IEEE, 2020, pp. 1661–1665.
  5. Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network in the air: Deep adversarial learning for wireless signal spoofing,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 1, pp. 294–303, 2020.
  6. Y. Zhao, G. Zheng, S. Mukherjee, R. McCann, and A. Awadallah, “Admoe: Anomaly detection with mixture-of-experts from noisy labels,” in Proceedings of the Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence, vol. 37, no. 4, 2023, pp. 4937–4945.
  7. C. I. Pinzón, J. F. De Paz, M. Navarro, J. Bajo, V. Julian, and J. M. Corchado, “Real-time cbr-agent with a mixture of experts in the reuse stage to classify and detect dos attacks,” Applied Soft Computing, vol. 11, no. 7, pp. 4384–4398, 2011.
  8. E. Erdemir, P. L. Dragotti, and D. Gündüz, “Privacy-aware communication over a wiretap channel with generative networks,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.   IEEE, 2022, pp. 2989–2993.
  9. T. Wu, Z. Chen, D. He, L. Qian, Y. Xu, M. Tao, and W. Zhang, “CDDM: Channel denoising diffusion models for wireless communications,” in Proceedings of IEEE Global Communications Conference.   IEEE, 2023, pp. 7429–7434.
  10. J. Wang, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and K. B. Letaief, “Toward scalable generative ai via mixture of experts in mobile edge networks,” arXiv preprint arXiv:2402.06942, 2024.
  11. Q. Yu, M. S. Kavitha, and T. Kurita, “Mixture of experts with convolutional and variational autoencoders for anomaly detection,” Applied Intelligence, vol. 51, pp. 3241–3254, 2021.
  12. D. Wang, B. Bai, W. Zhao, and Z. Han, “A survey of optimization approaches for wireless physical layer security,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1878–1911, 2018.
  13. H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang, Z. Xiong, S. Cui et al., “Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization,” arXiv preprint arXiv:2308.05384, 2023.
  14. J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, “Modeling task relationships in multi-task learning with multi-gate mixture-of-experts,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1930–1939.
  15. S. A. Hoseini, F. Bouhafs, N. Aboutorab, P. Sadeghi, and F. d. Hartog, “Cooperative jamming for physical layer security enhancement using deep reinforcement learning,” arXiv preprint arXiv:2403.10342, 2024.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Changyuan Zhao (17 papers)
  2. Hongyang Du (154 papers)
  3. Dusit Niyato (671 papers)
  4. Jiawen Kang (204 papers)
  5. Zehui Xiong (177 papers)
  6. Dong In Kim (168 papers)
  7. Xuemin (104 papers)
  8. Shen (108 papers)
  9. Khaled B. Letaief (209 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com