Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative AI for Secure Physical Layer Communications: A Survey (2402.13553v1)

Published 21 Feb 2024 in cs.CR

Abstract: Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, traditional AI approaches frequently struggle, primarily due to their limited capacity to dynamically adjust to the evolving physical attributes of transmission channels and the complexity of contemporary cyber threats. This adaptability and analytical depth are precisely where GAI excels. Therefore, in this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks. We first emphasize the importance of advanced GAI models in this area, including Generative Adversarial Networks (GANs), Autoencoders (AEs), Variational Autoencoders (VAEs), and Diffusion Models (DMs). We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity. Furthermore, we also present future research directions focusing model improvements, multi-scenario deployment, resource-efficient optimization, and secure semantic communication, highlighting the multifaceted potential of GAI to address emerging challenges in secure physical layer communications and sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (167)
  1. D. Baidoo-Anu and L. O. Ansah, “Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning,” Journal of AI, vol. 7, no. 1, pp. 52–62, Jan. 2023.
  2. H. Du, D. Niyato, J. Kang, Z. Xiong, P. Zhang, S. Cui, X. Shen, S. Mao, Z. Han, A. Jamalipour et al., “The age of generative AI and AI-generated everything,” arXiv preprint arXiv:2311.00947, 2023.
  3. Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of AI-generated content (AIGC): A history of generative ai from GAN to ChatGPT,” arXiv preprint arXiv:2303.04226, 2023.
  4. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2021.
  5. J. Betker, G. Goh, L. Jing, TimBrooks, J. Wang, L. Li, LongOuyang, JuntangZhuang, JoyceLee, YufeiGuo, WesamManassra, PrafullaDhariwal, CaseyChu, YunxinJiao, and A. Ramesh, “Improving image generation with better captions.” [Online]. Available: https://api.semanticscholar.org/CorpusID:264403242
  6. T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of ChatGPT: The history, status quo and potential future development,” IEEE/CAA JAS, vol. 10, no. 5, pp. 1122–1136, May. 2023.
  7. I. K. Dutta, B. Ghosh, A. Carlson, M. Totaro, and M. Bayoumi, “Generative adversarial networks in security: a survey,” in Proceedings of the 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference.   IEEE, 2020, pp. 0399–0405.
  8. S. Aldossary and W. Allen, “Data security, privacy, availability and integrity in cloud computing: issues and current solutions,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 4, Apr. 2016.
  9. Y. Zhang, Y. Lu, R. Zhang, B. Ai, and D. Niyato, “Deep reinforcement learning for secrecy energy efficiency maximization in ris-assisted networks,” IEEE Trans. Veh. Technol., 2023.
  10. S. Kumar, S. Dalal, and V. Dixit, “The OSI model: Overview on the seven layers of computer networks,” Int. J. Comput. Sci. Inf. Technol. Res., vol. 2, no. 3, pp. 461–466, Mar. 2014.
  11. J. Zhang, H. Du, Q. Sun, B. Ai, and D. W. K. Ng, “Physical layer security enhancement with reconfigurable intelligent surface-aided networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 3480–3495, 2021.
  12. Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wirel. Commun., vol. 18, no. 2, pp. 66–74, 2011.
  13. Z. Lv, A. K. Singh, and J. Li, “Deep learning for security problems in 5G heterogeneous networks,” IEEE Netw., vol. 35, no. 2, pp. 67–73, 2021.
  14. W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classification using convolutional neural network for representation learning,” in Proceedings of the International conference on information networking.   IEEE, 2017, pp. 712–717.
  15. R. Liao, H. Wen, F. Pan, H. Song, A. Xu, and Y. Jiang, “A novel physical layer authentication method with convolutional neural network,” in Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications.   IEEE, 2019, pp. 231–235.
  16. D. Hong, Z. Zhang, and X. Xu, “Automatic modulation classification using recurrent neural networks,” in Proceedings of the 3rd IEEE International Conference on Computer and Communications.   IEEE, 2017, pp. 695–700.
  17. X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iterative decoders of ldpc codes via recurrent quantized neural networks,” IEEE Trans. Commun., vol. 68, no. 7, pp. 3963–3974, 2020.
  18. J. Kim and H. Kim, “Applying recurrent neural network to intrusion detection with hessian free optimization,” in International Workshop on Information Security Applications.   Springer, 2015, pp. 357–369.
  19. J. Wang, H. Du, D. Niyato, J. Kang, S. Cui, X. Shen, and P. Zhang, “Generative ai for integrated sensing and communication: Insights from the physical layer perspective,” arXiv preprint arXiv:2310.01036, 2023.
  20. T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, 2017.
  21. A. Karapantelakis, P. Alizadeh, A. Alabassi, K. Dey, and A. Nikou, “Generative ai in mobile networks: a survey,” Ann. Telecommun., pp. 1–19, 2023.
  22. N. Van Huynh, J. Wang, H. Du, D. T. Hoang, D. Niyato, D. N. Nguyen, D. I. Kim, and K. B. Letaief, “Generative ai for physical layer communications: A survey,” arXiv preprint arXiv:2312.05594, 2023.
  23. Z. Xu, W. Liu, J. Huang, C. Yang, J. Lu, and H. Tan, “Artificial intelligence for securing IoT services in edge computing: a survey,” Secur. Commun. Netw., vol. 2020, pp. 1–13, 2020.
  24. H. Sharma and N. Kumar, “Deep learning based physical layer security for terrestrial communications in 5G and beyond networks: A survey,” Phys. Commun., p. 102002, 2023.
  25. J. Zhai, S. Zhang, J. Chen, and Q. He, “Autoencoder and its various variants,” in Proceedings of the IEEE international conference on systems, man, and cybernetics.   IEEE, 2018, pp. 415–419.
  26. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  27. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Adv. Neural Inf. Process., vol. 33, pp. 6840–6851, 2020.
  28. A. Smith and J. Downey, “A communication channel density estimating generative adversarial network,” in Proceedings of the IEEE Cognitive Communications for Aerospace Applications Workshop.   IEEE, 2019, pp. 1–7.
  29. C.-H. Lin, C.-C. Wu, K.-F. Chen, and T.-S. Lee, “A variational autoencoder-based secure transceiver design using deep learning,” in Proceeding of IEEE Global Communications Conference.   IEEE, 2020, pp. 1–7.
  30. M. Nemati, J. Park, and J. Choi, “VQ-VAE empowered wireless communication for joint source-channel coding and beyond,” 2023.
  31. J. Han, Y. Zhou, G. Liu, T. Liu, and X. Zeng, “A novel physical layer key generation method based on WGAN-GP adversarial autoencoder,” in Proceedings of the 4th International Conference on Communications, Information System and Computer Engineering.   IEEE, 2022, pp. 1–6.
  32. K. Merchant and B. Nousain, “Securing IoT RF fingerprinting systems with generative adversarial networks,” in Proceedings of the IEEE Military Communications Conference.   IEEE, 2019, pp. 584–589.
  33. J. Gong, X. Xu, Y. Qin, and W. Dong, “A generative adversarial network based framework for specific emitter characterization and identification,” in Proceedings of the 11th International Conference on Wireless Communications and Signal Processing.   IEEE, 2019, pp. 1–6.
  34. K. S. Germain and F. Kragh, “Mobile physical-layer authentication using channel state information and conditional recurrent neural networks,” in Proceedings of the IEEE 93rd Vehicular Technology Conference.   IEEE, 2021, pp. 1–6.
  35. R. Meng, X. Xu, B. Wang, H. Sun, S. Xia, S. Han, and P. Zhang, “Physical-layer authentication based on hierarchical variational autoencoder for industrial internet of things,” IEEE Internet Things J., vol. 10, no. 3, pp. 2528–2544, 2022.
  36. T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and mitigating wireless jamming attacks,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 1, pp. 2–14, 2018.
  37. Y. Tang, Z. Zhao, X. Ye, S. Zheng, and L. Wang, “Jamming recognition based on AC-VAEGAN,” in Proceedings of the 15th IEEE International Conference on Signal Processing, vol. 1.   IEEE, 2020, pp. 312–315.
  38. H. Han, X. Wang, F. Gu, W. Li, Y. Cai, Y. Xu, and Y. Xu, “Better late than never: GAN-enhanced dynamic anti-jamming spectrum access with incomplete sensing information,” IEEE Wirel. Commun. Lett., vol. 10, no. 8, pp. 1800–1804, 2021.
  39. Y. Wang, X. Liu, and M. Wang, “A double network structure anti-jamming algorithm based on deep reinforcement learning,” in J. Phys. Conf. Ser., vol. 1982, no. 1.   IOP Publishing, 2021, p. 012106.
  40. Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network for wireless signal spoofing,” in Proceedings of the ACM Workshop on Wireless Security and Machine Learning, 2019, pp. 55–60.
  41. M. Ma, Y. Zhang, T. Zhao, W. Zhang, and Z. He, “Controllable wireless spoofing attack based on conditional began and auxiliary channel sensing,” Electronics, vol. 12, no. 1, p. 84, 2022.
  42. Y. Yang, L. Zhu, Q. He, and X. Deng, “A simple high-performance generation method for spoofing jamming signals,” in Proceedings of the International Symposium on Networks, Computers and Communications.   IEEE, 2022, pp. 1–5.
  43. S. Rajendran, W. Meert, V. Lenders, and S. Pollin, “Unsupervised wireless spectrum anomaly detection with interpretable features,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 637–647, 2019.
  44. S. Harini, K. Nivedha, S. K. BG, R. Gokul, B. Jayasree et al., “Data anomaly detection in wireless sensor networks using β𝛽{\beta}italic_β-variational autoencoder,” in Proceedings of the International Conference on Intelligent Systems for Communication, IoT and Security.   IEEE, 2023, pp. 631–636.
  45. X. Zhou, J. Xiong, X. Zhang, X. Liu, and J. Wei, “A radio anomaly detection algorithm based on modified generative adversarial network,” IEEE Wirel. Commun. Lett., vol. 10, no. 7, pp. 1552–1556, 2021.
  46. A. Toma, A. Krayani, M. Farrukh, H. Qi, L. Marcenaro, Y. Gao, and C. S. Regazzoni, “Ai-based abnormality detection at the PHY-layer of cognitive radio by learning generative models,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 1, pp. 21–34, 2020.
  47. D. N. Tran, T. D. Tran, and L. Nguyen, “Generative adversarial networks for recovering missing spectral information,” in Proceedings of the IEEE Radar Conference.   IEEE, 2018, pp. 1223–1227.
  48. Q. Feng, J. Zhang, L. Chen, and F. Liu, “Waveform reconstruction of DSSS signal based on VAE-GAN,” Wirel. Commun. Mob. Comput., vol. 2022, 2022.
  49. T. Wu, Z. Chen, D. He, L. Qian, Y. Xu, M. Tao, and W. Zhang, “Cddm: Channel denoising diffusion models for wireless communications,” arXiv preprint arXiv:2305.09161, 2023.
  50. M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D. I. Kim, X. Shen et al., “Unleashing the power of edge-cloud generative ai in mobile networks: A survey of aigc services,” IEEE Commun. Surv. Tutor., 2024.
  51. C. Liang, H. Du, Y. Sun, D. Niyato, J. Kang, D. Zhao, and M. A. Imran, “Generative ai-driven semantic communication networks: Architecture, technologies and applications,” arXiv preprint arXiv:2401.00124, 2023.
  52. V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin, “Security and privacy for 6G: A survey on prospective technologies and challenges,” IEEE Commun. Surv. Tutor., vol. 23, no. 4, pp. 2384–2428, 2021.
  53. S. Santhosh Kumar, M. Selvi, A. Kannan et al., “A comprehensive survey on machine learning-based intrusion detection systems for secure communication in internet of things,” Comput. Intell. Neurosci., vol. 2023, 2023.
  54. F. Alwahedi, A. Aldhaheri, M. A. Ferrag, A. Battah, and N. Tihanyi, “Machine learning techniques for iot security: Current research and future vision with generative ai and large language models,” Internet of Things and Cyber-Physical Systems, 2024.
  55. A. K. Kamboj, P. Jindal, and P. Verma, “Machine learning-based physical layer security: techniques, open challenges, and applications,” Wirel. Netw., vol. 27, pp. 5351–5383, 2021.
  56. H. Sharma, G. Sharma, and N. Kumar, “Ai-assisted secure data transmission techniques for next-generation hetnets: A review,” Comput. Commun., 2023.
  57. J. Wang, H. Du, D. Niyato, M. Zhou, J. Kang, and H. V. Poor, “Acceleration estimation of signal propagation path length changes for wireless sensing,” arXiv preprint arXiv:2401.00160, 2023.
  58. J. Wang, H. Du, D. Niyato, M. Zhou, J. Kang, Z. Xiong, and A. Jamalipour, “Through the wall detection and localization of autonomous mobile device in indoor scenario,” IEEE J. Sel. Areas Commun., 2023.
  59. S. Samonas and D. Coss, “The CIA strikes back: Redefining confidentiality, integrity and availability in security.” J. Inf. Syst. Secur., vol. 10, no. 3, 2014.
  60. J. M. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 21, no. 2, pp. 1773–1828, 2018.
  61. L. Bai, L. Zhu, J. Liu, J. Choi, and W. Zhang, “Physical layer authentication in wireless communication networks: A survey,” J. Commun. Inf. Netw., vol. 5, no. 3, pp. 237–264, 2020.
  62. C. Shahriar, M. La Pan, M. Lichtman, T. C. Clancy, R. McGwier, R. Tandon, S. Sodagari, and J. H. Reed, “Phy-layer resiliency in ofdm communications: A tutorial,” IEEE Commun. Surv. Tutor., vol. 17, no. 1, pp. 292–314, 2014.
  63. M. Shakiba-Herfeh, A. Chorti, and H. Vincent Poor, “Physical layer security: Authentication, integrity, and confidentiality,” Physical layer security, pp. 129–150, 2021.
  64. H. Shen, X. Li, Q. Cheng, C. Zeng, G. Yang, H. Li, and L. Zhang, “Missing information reconstruction of remote sensing data: A technical review,” IEEE Trans. Geosci. Remote Sens., vol. 3, no. 3, pp. 61–85, 2015.
  65. C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.
  66. A. Oussidi and A. Elhassouny, “Deep generative models: Survey,” in Proceedings of the International conference on intelligent systems and computer vision.   IEEE, 2018, pp. 1–8.
  67. A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Adv. Neural Inf. Process., vol. 30, 2017.
  68. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
  69. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
  70. A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans,” in Proceedings of the International conference on machine learning.   PMLR, 2017, pp. 2642–2651.
  71. A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.
  72. A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” in International conference on machine learning.   PMLR, 2016, pp. 1558–1566.
  73. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  74. Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security: Technical challenges, recent advances, and future trends,” Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, 2016.
  75. K.-L. Besser, C. R. Janda, P.-H. Lin, and E. A. Jorswieck, “Flexible design of finite blocklength wiretap codes by autoencoders,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.   IEEE, 2019, pp. 2512–2516.
  76. E. Erdemir, P. L. Dragotti, and D. Gündüz, “Privacy-aware communication over a wiretap channel with generative networks,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.   IEEE, 2022, pp. 2989–2993.
  77. M. K. Fadul, D. R. Reising, K. Arasu, and M. R. Clark, “Adversarial machine learning for enhanced spread spectrum communications,” in Proceedings of the IEEE Military Communications Conference.   IEEE, 2021, pp. 783–788.
  78. M. S. Sheikh, J. Liang, and W. Wang, “A survey of security services, attacks, and applications for vehicular ad hoc networks (vanets),” Sensors, vol. 19, no. 16, p. 3589, 2019.
  79. W. Shi, X. Jiang, J. Hu, Y. Teng, Y. Wang, H. He, R. Dong, F. Shu, and J. Wang, “Physical layer security techniques for future wireless networks,” arXiv preprint arXiv:2112.14469, 2021.
  80. H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels using polar codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6428–6443, 2011.
  81. B. Sklar, “Rayleigh fading channels in mobile digital communication systems. i. characterization,” IEEE Comm. Mag., vol. 35, no. 7, pp. 90–100, 1997.
  82. J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman, “Toward multimodal image-to-image translation,” Adv. Neural Inf. Process., vol. 30, 2017.
  83. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in Proceedings of the IEEE international conference on acoustics, speech and signal processing.   IEEE, 2018, pp. 2326–2330.
  84. J. Zhang, R. Woods, T. Q. Duong, A. Marshall, Y. Ding, Y. Huang, and Q. Xu, “Experimental study on key generation for physical layer security in wireless communications,” IEEE Access, vol. 4, pp. 4464–4477, 2016.
  85. G. Li, A. Hu, J. Zhang, L. Peng, C. Sun, and D. Cao, “High-agreement uncorrelated secret key generation based on principal component analysis preprocessing,” IEEE Trans. Commun., vol. 66, no. 7, pp. 3022–3034, 2018.
  86. D. Roy, T. Mukherjee, M. Chatterjee, E. Blasch, and E. Pasiliao, “RFAL: Adversarial learning for rf transmitter identification and classification,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 783–801, 2019.
  87. H. Han, L. Cui, W. Li, L. Huang, Y. Cai, J. Cai, and Y. Zhang, “Radio frequency fingerprint based wireless transmitter identification against malicious attacker: An adversarial learning approach,” in Proceedings of the International Conference on Wireless Communications and Signal Processing.   IEEE, 2020, pp. 310–315.
  88. K. S. Germain and F. Kragh, “Physical-layer authentication using channel state information and machine learning,” in Proceedings of the 14th International Conference on Signal Processing and Communication Systems.   IEEE, 2020, pp. 1–8.
  89. F. Azam, S. K. Yadav, N. Priyadarshi, S. Padmanaban, and R. C. Bansal, “A comprehensive review of authentication schemes in vehicular ad-hoc network,” IEEE Access, vol. 9, pp. 31 309–31 321, 2021.
  90. R. Zhang, K. Xiong, H. Du, D. Niyato, J. Kang, X. Shen, and H. V. Poor, “Generative ai-enabled vehicular networks: Fundamentals, framework, and case study,” arXiv preprint arXiv:2304.11098, 2023.
  91. A. Jagannath, J. Jagannath, and P. S. P. V. Kumar, “A comprehensive survey on radio frequency (rf) fingerprinting: Traditional approaches, deep learning, and open challenges,” Comput. Netw., vol. 219, p. 109455, 2022.
  92. K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for RF device fingerprinting in cognitive communication networks,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 160–167, 2018.
  93. R. Das, A. Gadre, S. Zhang, S. Kumar, and J. M. Moura, “A deep learning approach to IoT authentication,” in Proceedings of the IEEE international conference on communications.   IEEE, 2018, pp. 1–6.
  94. Z. Gan, L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li, and L. Carin, “Triangle generative adversarial networks,” Adv. Neural Inf. Process., vol. 30, 2017.
  95. Z. Wang, W. Dou, M. Ma, X. Feng, Z. Huang, C. Zhang, Y. Guo, and D. Chen, “A survey of user authentication based on channel state information,” Wirel. Commun. Mob. Comput., vol. 2021, pp. 1–16, 2021.
  96. A. Siegman, “The antenna properties of optical heterodyne receivers,” Applied optics, vol. 5, no. 10, pp. 1588–1594, 1966.
  97. S. Xia, X. Tao, N. Li, S. Wang, T. Sui, H. Wu, J. Xu, and Z. Han, “Multiple correlated attributes based physical layer authentication in wireless networks,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1673–1687, 2021.
  98. M. Bishop, M. Carvalho, R. Ford, and L. M. Mayron, “Resilience is more than availability,” in Proceedings of the New Security Paradigms Workshop, 2011, pp. 95–104.
  99. W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Comput. Netw., vol. 55, no. 15, pp. 3604–3629, 2011.
  100. P. F. de Araujo-Filho, G. Kaddoum, M. Naili, E. T. Fapi, and Z. Zhu, “Multi-objective GAN-based adversarial attack technique for modulation classifiers,” IEEE Commun. Lett., vol. 26, no. 7, pp. 1583–1587, 2022.
  101. Y. Cai, F. Song, Y. Xu, X. Liu, X. Zhang, and H. Han, “Spectrum waterfall completion in jamming enviroment: A general adversarial networks method,” in Proceedings of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference, vol. 9.   IEEE, 2020, pp. 1661–1665.
  102. H. Han, Y. Xu, Z. Jin, W. Li, X. Chen, G. Fang, and Y. Xu, “Primary-user-friendly dynamic spectrum anti-jamming access: A GAN-enhanced deep reinforcement learning approach,” IEEE Wirel. Commun. Lett., vol. 11, no. 2, pp. 258–262, 2021.
  103. R. Lin, H. Qiu, J. Wang, Z. Zhang, L. Wu, and F. Shu, “Physical layer security enhancement in energy harvesting-based cognitive internet of things: A GAN-powered deep reinforcement learning approach,” IEEE Internet Things J., 2023.
  104. R. Tang, D. Gao, M. Yang, T. Guo, H. Wu, and G. Shi, “GAN-inspired intelligent jamming and anti-jamming strategy for semantic communication systems,” in Proceedings of the IEEE International Conference on Communications Workshops.   IEEE, 2023, pp. 1623–1628.
  105. E. Jayabalan and R. Pugazendi, “Generative adversarial networks for secure data transmission in wireless network.” Intell. Autom. Soft Comput., vol. 35, no. 3, 2023.
  106. Y. Huo, Y. Tian, L. Ma, X. Cheng, and T. Jing, “Jamming strategies for physical layer security,” IEEE Wirel. Commun., vol. 25, no. 1, pp. 148–153, 2017.
  107. H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 24, no. 2, pp. 767–809, 2022.
  108. Z. Wu, Y. Zhao, Z. Yin, and H. Luo, “Jamming signals classification using convolutional neural network,” in Proceedings of the IEEE International Symposium on Signal Processing and Information Technology.   IEEE, 2017, pp. 062–067.
  109. Y. Cai, K. Shi, F. Song, Y. Xu, X. Wang, and H. Luan, “Jamming pattern recognition using spectrum waterfall: A deep learning method,” in Proceedings of the IEEE 5th international conference on computer and communications.   IEEE, 2019, pp. 2113–2117.
  110. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A brief survey,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 26–38, 2017.
  111. X. Wang, J. Wang, Y. Xu, J. Chen, L. Jia, X. Liu, and Y. Yang, “Dynamic spectrum anti-jamming communications: Challenges and opportunities,” IEEE Commun. Mag., vol. 58, no. 2, pp. 79–85, 2020.
  112. X. Liu, Y. Xu, L. Jia, Q. Wu, and A. Anpalagan, “Anti-jamming communications using spectrum waterfall: A deep reinforcement learning approach,” IEEE Commun. Lett., vol. 22, no. 5, pp. 998–1001, 2018.
  113. Z. Li, J. Cao, H. Wang, and M. Zhao, “Sparsely self-supervised generative adversarial nets for radio frequency estimation,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2428–2442, 2019.
  114. S. Kavaiya, D. K. Patel, Z. Ding, Y. L. Guan, and S. Sun, “Physical layer security in cognitive vehicular networks,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2557–2569, 2020.
  115. Y. Wang, X. Liu, M. Wang, and Y. Yu, “A hidden anti-jamming method based on deep reinforcement learning,” arXiv preprint arXiv:2012.12448, 2020.
  116. D. S. Gurjar, H. H. Nguyen, and H. D. Tuan, “Wireless information and power transfer for IoT applications in overlay cognitive radio networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 3257–3270, 2018.
  117. D. Xu and H. Zhu, “Secure transmission for SWIPT IoT systems with full-duplex IoT devices,” IEEE Internet Things J., vol. 6, no. 6, pp. 10 915–10 933, 2019.
  118. H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and X. Shen, “Semantic communications for wireless sensing: RIS-aided encoding and self-supervised decoding,” IEEE J. Sel. Areas Commun., 2023.
  119. H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, M. Guizani, and D. I. Kim, “Rethinking wireless communication security in semantic internet of things,” IEEE Wirel. Commun., vol. 30, no. 3, pp. 36–43, 2023.
  120. Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network in the air: Deep adversarial learning for wireless signal spoofing,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 1, pp. 294–303, 2020.
  121. T. Roy, T. O’Shea, and N. West, “Generative adversarial radio spectrum networks,” in Proceedings of the ACM Workshop on Wireless Security and Machine Learning, 2019, pp. 12–15.
  122. J. Li, X. Zhu, M. Ouyang, W. Li, Z. Chen, and Q. Fu, “GNSS spoofing jamming detection based on generative adversarial network,” IEEE Sens. J., vol. 21, no. 20, pp. 22 823–22 832, 2021.
  123. M. H. Yılmaz and H. Arslan, “A survey: Spoofing attacks in physical layer security,” in Proceedings of the IEEE 40th Local Computer Networks Conference Workshops.   IEEE, 2015, pp. 812–817.
  124. NVIDIA, “Jetson Nano Developer Kit,” https://developer.nvidia.com/embedded/jetson-nano-developer-kit.
  125. Xilinx, “Zynq UltraScale+ MPSoC,” https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascalempsoc.html.
  126. C. U. Ndujiuba, O. Oni, and A. E. Ibhaze, “Comparative analysis of digital modulation techniques in LTE 4G systems,” J. Wirel. Commun. Netw., vol. 5, no. 2, pp. 60–66, Feb. 2015.
  127. A. Marzouk, P. Barros, M. Eppe, and S. Wermter, “The conditional boundary equilibrium generative adversarial network and its application to facial attributes,” in Proceedings of the International Joint Conference on Neural Networks.   IEEE, 2019, pp. 1–7.
  128. Y. Alginahi et al., “Preprocessing techniques in character recognition,” Character recognition, vol. 1, pp. 1–19, 2010.
  129. J. Bhatti and T. E. Humphreys, “Hostile control of ships via false GPS signals: Demonstration and detection,” Navig. J. Inst., vol. 64, no. 1, pp. 51–66, 2017.
  130. Q. Feng, Y. Zhang, C. Li, Z. Dou, and J. Wang, “Anomaly detection of spectrum in wireless communication via deep auto-encoders,” J. Supercomput., vol. 73, pp. 3161–3178, 2017.
  131. A. Gkelias and K. K. Leung, “GAN-based detection of adversarial EM signal waveforms,” in Proceedings of the IEEE Military Communications Conference.   IEEE, 2022, pp. 356–361.
  132. D. Cheng, Y. Fan, S. Fang, M. Wang, and H. Liu, “ResNet-AE for radar signal anomaly detection,” Sens., vol. 22, no. 16, p. 6249, 2022.
  133. T. Luo and S. G. Nagarajan, “Distributed anomaly detection using autoencoder neural networks in WSN for IoT,” in Proceedings of the IEEE international conference on communications.   IEEE, 2018, pp. 1–6.
  134. H. Lu, M. Du, K. Qian, X. He, and K. Wang, “GAN-based data augmentation strategy for sensor anomaly detection in industrial robots,” IEEE Sens. J., vol. 22, no. 18, pp. 17 464–17 474, 2021.
  135. A. Toma, A. Krayani, L. Marcenaro, Y. Gao, and C. S. Regazzoni, “Deep learning for spectrum anomaly detection in cognitive mmwave radios,” in Proceedings of the IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications.   IEEE, 2020, pp. 1–7.
  136. G. Rathinavel, N. Muralidhar, N. Ramakrishnan, and T. O’Shea, “Efficient generative wireless anomaly detection for next generation networks,” in Proceedings of the IEEE Military Communications Conference.   IEEE, 2022, pp. 594–599.
  137. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.
  138. S. El Hajjami, J. Malki, M. Berrada, and B. Fourka, “Machine learning for anomaly detection. performance study considering anomaly distribution in an imbalanced dataset,” in Proceedings of the 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications.   IEEE, 2020, pp. 1–8.
  139. Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and A. Jamalipour, “Deep generative model and its applications in efficient wireless network management: A tutorial and case study,” arXiv preprint arXiv:2303.17114, 2023.
  140. J. M. Elson and J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Applied optics, vol. 34, no. 1, pp. 201–208, 1995.
  141. M. Fil, M. Mesinovic, M. Morris, and J. Wildberger, “beta-VAE reproducibility: Challenges and extensions,” arXiv preprint arXiv:2112.14278, 2021.
  142. F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data imbalance in classification: Experimental evaluation,” Inf. Sci., vol. 513, pp. 429–441, 2020.
  143. J. Lee and K. Park, “GAN-based imbalanced data intrusion detection system,” Pers. Ubiquitous Comput., vol. 25, pp. 121–128, 2021.
  144. M. Ravanbakhsh, M. Baydoun, D. Campo, P. Marin, D. Martin, L. Marcenaro, and C. S. Regazzoni, “Learning multi-modal self-awareness models for autonomous vehicles from human driving,” in Proceedings of the 21st International Conference on Information Fusion.   IEEE, 2018, pp. 1866–1873.
  145. K. Friston, B. Sengupta, and G. Auletta, “Cognitive dynamics: From attractors to active inference,” Proc. IEEE, vol. 102, no. 4, pp. 427–445, 2014.
  146. A. Martian, B. T. Sandu, O. Fratu, I. Marghescu, and R. Craciunescu, “Spectrum sensing based on spectral correlation for cognitive radio systems,” in Proceedings of the 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems.   IEEE, 2014, pp. 1–4.
  147. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proceedings of the 8th ieee international conference on data mining.   IEEE, 2008, pp. 413–422.
  148. Y. Wang, J. Wong, and A. Miner, “Anomaly intrusion detection using one class SVM,” in Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop.   IEEE, 2004, pp. 358–364.
  149. T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks,” Med. Image Anal., vol. 54, pp. 30–44, 2019.
  150. L. Guo, Y. Liu, Y. Li, and K. Yang, “High-precision reconstruction method based on MTS-GAN for electromagnetic environment data in sagiot,” Eurasip J. Adv. Signal Process, vol. 2023, no. 1, p. 125, 2023.
  151. A. H. Estiri, M. R. Sabramooz, A. Banaei, A. H. Dehghan, B. Jamialahmadi, and M. J. Siavoshani, “A variational auto-encoder approach for image transmission in noisy channel,” in Proceedings of the 10th International Symposium onTelecommunications.   IEEE, 2020, pp. 227–233.
  152. X. Chai, H. Gu, F. Li, H. Duan, X. Hu, and K. Lin, “Deep learning for irregularly and regularly missing data reconstruction,” Scientific reports, vol. 10, no. 1, p. 3302, 2020.
  153. L. H. Nguyen, T. Tran, and T. Do, “Sparse models and sparse recovery for ultra-wideband SAR applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 940–958, Feb. 2014.
  154. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Jan. 2013.
  155. T. Helleseth and C. Li, “Pseudo-noise sequences,” in Concise Encyclopedia of Coding Theory.   Chapman and Hall/CRC, 2021, pp. 613–644.
  156. W. Jiang and A. Liu, “Image motion deblurring based on deep residual shrinkage and generative adversarial networks,” Comput. Intell. Neurosci., vol. 2022, pp. 1–15, 2022.
  157. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017.
  158. A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,” in Proceedings of the 14th international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 215–223.
  159. D. Brunet, E. R. Vrscay, and Z. Wang, “On the mathematical properties of the structural similarity index,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1488–1499, Apr. 2011.
  160. Y. Jiang, S. Chang, and Z. Wang, “Transgan: Two transformers can make one strong gan,” arXiv preprint arXiv:2102.07074, vol. 1, no. 3, 2021.
  161. T. K. Boppana and P. Bagade, “GAN-AE: An unsupervised intrusion detection system for MQTT networks,” Eng Appl Artif Intell, vol. 119, p. 105805, 2023.
  162. Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K. B. Letaief, and H. V. Poor, “A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications,” IEEE Commun. Surv. Tutor., 2024.
  163. H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X. S. Shen, and H. V. Poor, “Exploring collaborative distributed diffusion-based AI-generated content (AIGC) in wireless networks,” IEEE Network, no. 99, pp. 1–8, 2023.
  164. Y. Shi, B. Paige, P. Torr et al., “Variational mixture-of-experts autoencoders for multi-modal deep generative models,” Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.
  165. J. Chen, G. Liu, and X. Chen, “AnimeGAN: A novel lightweight gan for photo animation,” in International symposium on intelligence computation and applications.   Springer, 2020, pp. 242–256.
  166. D. M. Vo, A. Sugimoto, and H. Nakayama, “PPCD-GAN: Progressive pruning and class-aware distillation for large-scale conditional GANs compression,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 2436–2444.
  167. H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang, Z. Xiong, S. Cui et al., “Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization,” arXiv preprint arXiv:2308.05384, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Changyuan Zhao (17 papers)
  2. Hongyang Du (154 papers)
  3. Dusit Niyato (671 papers)
  4. Jiawen Kang (204 papers)
  5. Zehui Xiong (177 papers)
  6. Dong In Kim (168 papers)
  7. Xuemin (104 papers)
  8. Shen (108 papers)
  9. Khaled B. Letaief (209 papers)
Citations (8)