Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative AI for Game Theory-based Mobile Networking (2404.09699v2)

Published 15 Apr 2024 in cs.GT

Abstract: With the continuous advancement of network technology, various emerging complex networking optimization problems have created a wide range of applications utilizing game theory. However, since game theory is a mathematical framework, game theory-based solutions often rely heavily on the experience and knowledge of human experts. Recently, the remarkable advantages exhibited by generative artificial intelligence (GAI) have gained widespread attention. In this work, we propose a novel GAI-enabled game theory solution that combines the powerful reasoning and generation capabilities of GAI to the design and optimization of mobile networking. Specifically, we first outline the game theory and key technologies of GAI, and explore the advantages of combining GAI with game theory. Then, we review the contributions and limitations of existing research and demonstrate the potential application values of GAI applied to game theory in mobile networking. Subsequently, we develop a LLM-enabled game theory framework to realize this combination, and demonstrate the effectiveness of the proposed framework through a case study in secured UAV networks. Finally, we provide several directions for future extensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. P. Lai, Q. He, F. Chen, M. Abdelrazek, J. Hosking, J. Grundy, and Y. Yang, “Online user and power allocation in dynamic NOMA-based mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 11, pp. 6676–6689, November 2023.
  2. S. Mao, Y. Cai, Y. Xia, W. Wu, X. Wang, F. Wang, T. Ge, and F. Wei, “Alympics: LLM agents meet game theory – Exploring strategic decision-making with AI agents,” arXiv preprint arXiv:2311.03220, 2023.
  3. C. Fan, J. Chen, Y. Jin, and H. He, “Can large language models serve as rational players in game theory? A systematic analysis,” in Proc. AAAI Conf. Artif. Intell., vol. 38, no. 16, March 2024, pp. 17 960–17 967.
  4. J. Duan, R. Zhang, J. Diffenderfer, B. Kailkhura, L. Sun, E. Stengel-Eskin, M. Bansal, T. Chen, and K. Xu, “Gtbench: Uncovering the strategic reasoning limitations of LLMs via game-theoretic evaluations,” arXiv preprint arXiv:2402.12348, 2024.
  5. F. Guo, “GPT agents in game theory experiments,” arXiv preprint arXiv:2305.05516, 2023.
  6. H. Zou, Q. Zhao, L. Bariah, M. Bennis, and M. Debbah, “Wireless multi-agent generative AI: From connected intelligence to collective intelligence,” arXiv preprint arXiv:2307.02757, 2023.
  7. Z. Wu, S. Zheng, Q. Liu, X. Han, B. I. Kwon, M. Onizuka, S. Tang, R. Peng, and C. Xiao, “Shall we talk: Exploring spontaneous collaborations of competing LLM agents,” arXiv preprint arXiv:2402.12327, 2024.
  8. I. Gemp, Y. Bachrach, M. Lanctot, R. Patel, V. Dasagi, L. Marris, G. Piliouras, and K. Tuyls, “States as strings as strategies: Steering language models with game-theoretic solvers,” arXiv preprint arXiv:2402.01704, 2024.
  9. X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, and S. Guo, “Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach,” J. Syst. Archit., vol. 134, p. 102780, January 2023.
  10. M. S. Abegaz, H. N. Abishu, Y. H. Yacob, T. A. Ayall, A. Erbad, and M. Guizani, “Blockchain-based resource trading in multi-UAV-assisted industrial IoT networks: A multi-agent DRL approach,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 1, pp. 166–181, March 2023.
  11. J. Kang, Y. Zhong, M. Xu, J. Nie, J. Wen, H. Du, D. Ye, X. Huang, D. Niyato, and S. Xie, “Tiny multi-agent DRL for twins migration in UAV metaverses: A multi-leader multi-follower Stackelberg game approach,” IEEE Internet Things J., pp. 1–1, 2024.
  12. Y. Babichenko, S. Barman, and R. Peretz, “Simple approximate equilibria in large games,” in Proc. ACM EC, 2014, pp. 753–770.
  13. A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-RAG: Learning to retrieve, generate, and critique through self-reflection,” arXiv preprint arXiv:2310.11511, 2023.
  14. H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, “A survey on generative diffusion models,” IEEE Trans. on Knowl. Data Eng., pp. 1–20, 2024.
  15. J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated network: A survey,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2714–2741, Fourthquarter 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Long He (17 papers)
  2. Geng Sun (70 papers)
  3. Dusit Niyato (671 papers)
  4. Hongyang Du (154 papers)
  5. Fang Mei (4 papers)
  6. Jiawen Kang (204 papers)
  7. Mérouane Debbah (634 papers)
  8. Zhu Han (431 papers)
Citations (3)
X Twitter Logo Streamline Icon: https://streamlinehq.com