Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Photonic Millimeter-wave Generation Beyond the Cavity Thermal Limit (2405.03788v1)

Published 6 May 2024 in physics.optics and physics.app-ph

Abstract: Next-generation communications, radar and navigation systems will extend and exploit the higher bandwidth of the millimeter-wave domain for increased communication data rates as well as radar with higher sensitivity and increased spatial resolution. However, realizing these advantages will require the generation of millimeter-wave signals with low phase noise in simple and compact form-factors. The rapidly developing field of photonic integration addresses this challenge and provides a path toward simplified and portable, low-noise mm-wave generation for these applications. We leverage these advances by heterodyning two silicon photonic chip lasers, phase-locked to the same miniature Fabry-Perot (F-P) cavity to demonstrate a simple framework for generating low-noise millimeter-waves with phase noise below the thermal limit of the F-P cavity. Specifically, we generate 94.5 GHz and 118.1 GHz millimeter-wave signals with phase noise of -117 dBc/Hz at 10 kHz offset, decreasing to -120 dBc/Hz at 40 kHz offset, a record low value for such photonic devices. We achieve this with existing technologies that can be integrated into a platform less than $\approx$ 10 mL in volume. Our work illustrates the significant potential and advantages of low size, weight, and power (SWaP) photonic-sourced mm-waves for communications and sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. J. Ma, R. Shrestha, L. Moeller, and D. M. Mittleman, “Invited article: Channel performance for indoor and outdoor terahertz wireless links,” APL Photonics, vol. 3, 5 2018.
  2. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication, vol. 12, pp. 16–32, 9 2014.
  3. A. Soumya, C. K. Mohan, and L. R. Cenkeramaddi, “Recent advances in mmwave-radar-based sensing, its applications, and machine learning techniques: A review,” Sensors, vol. 23, p. 8901, 11 2023.
  4. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78729–78757, 2019.
  5. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.
  6. W. Hong, Z. H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, Y. Hu, L. Kuai, Y. Yu, Z. Jiang, Z. Chen, J. Chen, Z. Yu, J. Zhai, N. Zhang, L. Tian, F. Wu, G. Yang, Z.-C. Hao, and J. Y. Zhou, “The role of millimeter-wave technologies in 5G/6G wireless communications,” IEEE Journal of Microwaves, vol. 1, pp. 101–122, 1 2021.
  7. H. Wang, L. Lu, P. Liu, J. Zhang, S. Liu, Y. Xie, T. Huo, H. Zhou, M. Xue, Y. Fang, J. Yang, and Z. Ye, “Millimeter waves in medical applications: status and prospects,” Intelligent Medicine, 12 2023.
  8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
  9. S. Doeleman, “High frequency very long baseline interferometry: Frequency standards and imaging an event horizon,” in Frequency Standards And Metrology, pp. 175–183, World Scientific, 2009.
  10. R. Bara-Maillet, S. R. Parker, N. R. Nand, J.-M. Le Floch, and M. E. Tobar, “Microwave–to–millimeter-wave synthesis chain phase noise performance,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 10, pp. 1895–1900, 2015.
  11. R. Bara, J.-M. L. Floch, M. E. Tobar, P. L. Stanwix, S. R. Parker, J. G. Hartnett, and E. N. Ivanov, “Generation of 103.75 GHz cw source with 5.10−16superscript5.10165.10^{-16}5.10 start_POSTSUPERSCRIPT - 16 end_POSTSUPERSCRIPT frequency instability using cryogenic sapphire oscillators,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 85–87, 2012.
  12. S. B. Waltman, L. W. Hollberg, A. K. McIntosh, and E. R. Brown, “Demonstration of a phase-lockable microwave to submillimeter wave sweeper,” in Millimeter and Submillimeter Waves and Applications III (M. N. Afsar, ed.), vol. 2842, pp. 55 – 58, International Society for Optics and Photonics, SPIE, 1996.
  13. S. Fukushima, C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” Journal of lightwave technology, vol. 21, no. 12, p. 3043, 2003.
  14. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power rf photodiodes and their applications,” Laser & Photonics Reviews, vol. 3, no. 1-2, pp. 123–137, 2009.
  15. A. Rolland, G. Ducournau, G. Danion, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J.-F. Lampin, et al., “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 2, pp. 260–266, 2014.
  16. T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser & Photonics Reviews, vol. 10, pp. 780–790, 9 2016.
  17. T. Tetsumoto, T. Nagatsuma, M. E. Fermann, G. Navickaite, M. Geiselmann, and A. Rolland, “Optically referenced 300 GHz millimetre-wave oscillator,” Nature Photonics, vol. 15, pp. 516–522, 7 2021.
  18. E. A. Kittlaus, D. Eliyahu, S. Ganji, S. Williams, A. B. Matsko, K. B. Cooper, and S. Forouhar, “A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar,” Nature Communications, vol. 12, p. 4397, 7 2021.
  19. W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, and J. E. Bowers, “Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-q microresonators,” Nature Photonics, vol. 15, pp. 346–353, 5 2021.
  20. C. Xiang, W. Jin, O. Terra, B. Dong, H. Wang, L. Wu, J. Guo, T. J. Morin, E. Hughes, J. Peters, Q.-X. Ji, A. Feshali, M. Paniccia, K. J. Vahala, and J. E. Bowers, “3d integration enables ultralow-noise isolator-free lasers in silicon photonics,” Nature, vol. 620, pp. 78–85, 8 2023.
  21. B. Li, W. Jin, L. Wu, L. Chang, H. Wang, B. Shen, Z. Yuan, A. Feshali, M. Paniccia, K. J. Vahala, and J. E. Bowers, “Reaching fiber-laser coherence in integrated photonics,” Optics Letters, vol. 46, p. 5201, 10 2021.
  22. H. Cheng, N. Jin, Z. Dai, C. Xiang, J. Guo, Y. Zhou, S. A. Diddams, F. Quinlan, J. Bowers, O. Miller, and P. Rakich, “A novel approach to interface high-q fabry–pérot resonators with photonic circuits,” APL Photonics, vol. 8, 11 2023.
  23. Y. Liu, D. Lee, T. Nakamura, N. Jin, H. Cheng, M. L. Kelleher, C. A. McLemore, I. Kudelin, W. Groman, S. A. Diddams, P. T. Rakich, and F. Quinlan, “Low-noise microwave generation with an air-gap optical reference cavity,” APL Photonics, vol. 9, 1 2024.
  24. I. Kudelin, W. Groman, Q.-X. Ji, J. Guo, M. L. Kelleher, D. Lee, T. Nakamura, C. A. McLemore, P. Shirmohammadi, S. Hanifi, H. Cheng, N. Jin, L. Wu, S. Halladay, Y. Luo, Z. Dai, W. Jin, J. Bai, Y. Liu, W. Zhang, C. Xiang, L. Chang, V. Iltchenko, O. Miller, A. Matsko, S. M. Bowers, P. T. Rakich, J. C. Campbell, J. E. Bowers, K. J. Vahala, F. Quinlan, and S. A. Diddams, “Photonic chip-based low-noise microwave oscillator,” Nature, vol. 627, pp. 534–539, 3 2024.
  25. S. Sun, M. W. Harrington, F. Tabatabaei, S. Hanifi, K. Liu, J. Wang, B. Wang, Z. Yang, R. Liu, J. S. Morgan, S. M. Bowers, P. A. Morton, K. D. Nelson, A. Beling, D. J. Blumenthal, and X. Yi, “Kerr optical frequency division with integrated photonics for stable microwave and mmwave generation,” arXiv preprint arXiv:2305.13575, 2023.
  26. J. Guo, C. A. McLemore, C. Xiang, D. Lee, L. Wu, W. Jin, M. Kelleher, N. Jin, D. Mason, L. Chang, A. Feshali, M. Paniccia, P. T. Rakich, K. J. Vahala, S. A. Diddams, F. Quinlan, and J. E. Bowers, “Chip-based laser with 1-hertz integrated linewidth,” Science Advances, vol. 8, 10 2022.
  27. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Applied Physics B Photophysics and Laser Chemistry, vol. 31, pp. 97–105, 6 1983.
  28. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett., vol. 93, p. 250602, Dec 2004.
  29. M. L. Kelleher, C. A. McLemore, D. Lee, J. Davila-Rodriguez, S. A. Diddams, and F. Quinlan, “Compact, portable, thermal-noise-limited optical cavity with low acceleration sensitivity,” Optics Express, vol. 31, no. 7, pp. 11954–11965, 2023.
  30. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” Journal of Lightwave Technology, vol. 26, pp. 2521–2530, 8 2008.
  31. N. Jin, C. A. McLemore, D. Mason, J. P. Hendrie, Y. Luo, M. L. Kelleher, P. Kharel, F. Quinlan, S. A. Diddams, and P. T. Rakich, “Micro-fabricated mirrors with finesse exceeding one million,” Optica, vol. 9, p. 965, 9 2022.
  32. J. Zang, X. Xie, Q. Yu, Z. Yang, A. Beling, and J. C. Campbell, “Reduction of amplitude-to-phase conversion in charge-compensated modified unitraveling carrier photodiodes,” Journal of Lightwave Technology, vol. 36, no. 22, pp. 5218–5223, 2018.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: