Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On homogeneous holomorphic conformal structures (2405.02527v1)

Published 4 May 2024 in math.DG

Abstract: We study compact complex manifolds $M$ admitting a conformal holomorphic Riemannian structure invariant under the action of a complex semi-simple Lie group $G$. We prove that if the group $G$ acts transitively and essentially, then $M$ is conformally flat.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. I. Agricola. Old and new on the exceptional group G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Notices Amer. Math. Soc., 55(8):922–929, 2008.
  2. G. D. Ambra and M. Gromov. Lectures on transformation groups: geometry and dynamics. Surveys in differential geometry, 1:19–111, 1990.
  3. U. Bader and A. Nevo. Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds. J. Differential Geom., 60(3):355–387, 2002.
  4. Pseudo-conformal actions of the mobius group. Differential Geometry and its Applications, 91:102070, 2023.
  5. I. Biswas and S. Dumitrescu. Holomorphic Riemannian metric and the fundamental group. Bull. Soc. Math. France, 147(3):455–468, 2019.
  6. A. Borel. Groupes lineaires algebriques. Annals of Mathematics, 64(1):20–82, 1956.
  7. S. Dumitrescu and A. Zeghib. Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds. Math. Ann., 345(1):53–81, 2009.
  8. C. Frances. About pseudo-Riemannian Lichnerowicz conjecture. Transform. Groups, 20(4):1015–1022, 2015.
  9. C. Frances and K. Melnick. Formes normales pour les champs conformes pseudo-riemanniens. Bull. Soc. Math. France, 141(3):377–421, 2013.
  10. C. Frances and A. Zeghib. Some remarks on conformal pseudo-Riemannian actions of simple Lie groups. Math. Res. Lett., 12(1):49–56, 2005.
  11. J. Gasqui and H. Goldschmidt. On the geometry of the complex quadric. Hokkaido Math. J., 20(2):279–312, 1991.
  12. J. Gasqui and H. Goldschmidt. The infinitesimal rigidity of the complex quadric of dimension four. Amer. J. Math., 116(3):501–539, 1994.
  13. Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(2):247–264, 1980.
  14. S. Klein. The complex quadric from the standpoint of Riemannian geometry. PhD thesis, Universität zu Köln, 2005.
  15. S. Klein. Totally geodesic submanifolds of the complex quadric. Differential Geom. Appl., 26(1):79–96, 2008.
  16. A. W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1996.
  17. S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II, volume Vol. II of Interscience Tracts in Pure and Applied Mathematics, No. 15. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
  18. K. Melnick and V. Pecastaing. The conformal group of a compact simply connected Lorentzian manifold. J. Amer. Math. Soc., 35(1):81–122, 2022.
  19. E. Musso and L. Nicolodi. Conformal geometry of isotropic curves in the complex quadric. Internat. J. Math., 33(8):Paper No. 2250054, 32, 2022.
  20. V. Pecastaing. Essential conformal actions of PSL⁢(2,ℝ)PSL2ℝ\rm{PSL}(2,\mathbb{R})roman_PSL ( 2 , blackboard_R ) on real-analytic compact Lorentz manifolds. Geom. Dedicata, 188:171–194, 2017.
  21. V. Pecastaing. Conformal actions of real-rank 1 simple Lie groups on pseudo-Riemannian manifolds. Transform. Groups, 24(4):1213–1239, 2019.
  22. V. Pecastaing. Conformal actions of higher rank lattices on compact pseudo-Riemannian manifolds. Geom. Funct. Anal., 30(3):955–987, 2020.
  23. J.-P. Serre. Complex semisimple Lie algebras. Springer-Verlag, New York, 1987. Translated from the French by G. A. Jones.
  24. R. J. Zimmer. Split rank and semisimple automorphism groups of G𝐺Gitalic_G-structures. J. Differential Geom., 26(1):169–173, 1987.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: