Forecasting Ferry Passenger Flow Using Long-Short Term Memory Neural Networks (2405.02098v3)
Abstract: With recent studies related to Neural Networks being used on different forecasting and time series investigations, this study aims to expand these contexts to ferry passenger traffic. The primary objective of the study is to investigate and evaluate an LSTM-based Neural Networks' capability to forecast ferry passengers of two ports in the Philippines. The proposed model's fitting and evaluation of the passenger flow forecasting of the two ports is based on monthly passenger traffic from 2016 to 2022 data that was acquired from the Philippine Ports Authority (PPA). This work uses Mean Absolute Percentage Error (MAPE) as its primary metric to evaluate the model's forecasting capability. The proposed LSTM-based Neural Networks model achieved 72% forecasting accuracy to the Batangas port ferry passenger data and 74% forecasting accuracy to the Mindoro port ferry passenger data. Using Keras and Scikit-learn Python libraries, this work concludes a reasonable forecasting performance of the presented LSTM model. Aside from these notable findings, this study also recommends further investigation and studies on employing other statistical, machine learning, and deep learning methods on forecasting ferry passenger flows.
- Angeles, F. A. A legal analysis on the implementation and enforcement of fishery laws of the coastal state in its exclusive economic zone : a Philippine perspective. Master of Science in Maritime Affairs, World Maritime University, Malmö, Sweden, 2015.
- Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model. Sustainability 2023, 15, 3296. https://doi.org/10.3390/su15043296
- Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(3), 627-638. https://doi.org/https://doi.org/10.30812/matrik.v22i3.3032
- Airlines passenger forecasting using LSTM based recurrent neural networks. International Journal Information Theories and Applications, 26(2), 178-187.
- Short-Term Passenger Flow Prediction of Urban Rail Transit Based on a Combined Deep Learning Model. Appl. Sci. 2022, 12, 7597. https://doi.org/10.3390/app12157597
- Short-term traffic flow prediction using variational LSTM networks. arXiv preprint arXiv:2002.07922.
- Forecasting air passenger traffic volume: evaluating time series models in long-term forecasting of Kuwait air passenger data, Advances and Applications in Statistics 70(1) (2021), 69-89.
- A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.
- Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," in IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, March 1994, doi: 10.1109/72.279181.
- Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
- Forecasting the OMXS30 - a comparison between ARIMA and LSTM (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413793
- Time series forecasting of the number of Malaysia Airlines and AirAsia passengers. In Journal of Physics: Conference Series (Vol. 995, No. 1, p. 012006). IOP Publishing.
- Retrieved from https://github.com/fchollet/keras
- Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.