Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharp Nonuniqueness in the Transport Equation with Sobolev Velocity Field (2405.01670v1)

Published 2 May 2024 in math.AP

Abstract: Given a divergence-free vector field ${\bf u} \in L\infty_t W{1,p}_x(\mathbb Rd)$ and a nonnegative initial datum $\rho_0 \in Lr$, the celebrated DiPerna--Lions theory established the uniqueness of the weak solution in the class of $L\infty_t Lr_x$ densities for $\frac{1}{p} + \frac{1}{r} \leq 1$. This range was later improved in [BCDL21] to $\frac{1}{p} + \frac{d-1}{dr} \leq 1$. We prove that this range is sharp by providing a counterexample to uniqueness when $\frac{1}{p} + \frac{d-1}{dr} > 1$. To this end, we introduce a novel flow mechanism. It is not based on convex integration, which has provided a non-optimal result in this context, nor on purely self-similar techniques, but shares features of both, such as a local (discrete) self similar nature and an intermittent space-frequency localization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS), 16(2):201–234, 2014. doi:10.4171/JEMS/431.
  2. Instability and nonuniqueness for the 2⁢d2𝑑2d2 italic_d Euler equations in vorticity form, after M. Vishik, 2021, 2112.04943.
  3. Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Annals of Mathematics, 196(1):415 – 455, 2022. doi:10.4007/annals.2022.196.1.3.
  4. L. Ambrosio and G. Crippa. Continuity equations and ODE flows with non-smooth velocity. Proc. Roy. Soc. Edinburgh Sect. A, 144(6):1191–1244, 2014. doi:10.1017/S0308210513000085.
  5. Exponential self-similar mixing by incompressible flows. J. Amer. Math. Soc., 32(2):445–490, 2019. doi:10.1090/jams/913.
  6. M. Aizenman. On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. of Math. (2), 107(2):287–296, 1978. doi:10.2307/1971145.
  7. S. Alben. Transition to branching flows in optimal planar convection. Phys. Rev. Fluids, 8:074502, Jul 2023. doi:10.1103/PhysRevFluids.8.074502.
  8. L. Ambrosio. Transport equation and Cauchy problem for B⁢V𝐵𝑉BVitalic_B italic_V vector fields. Invent. Math., 158(2):227–260, 2004. doi:10.1007/s00222-004-0367-2.
  9. S. Armstrong and V. Vicol. Anomalous diffusion by fractal homogenization. arXiv preprint arXiv:2305.05048, 2023.
  10. S. Bianchini and P. Bonicatto. A uniqueness result for the decomposition of vector fields in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Invent. Math., 220(1):255–393, 2020. doi:10.1007/s00222-019-00928-8.
  11. Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Arch. Ration. Mech. Anal., 240(2):1055–1090, 2021. doi:10.1007/s00205-021-01628-5.
  12. E. Bruè and C. De Lellis. Anomalous dissipation for the forced 3D Navier-Stokes equations. Comm. Math. Phys., 400(3):1507–1533, 2023. doi:10.1007/s00220-022-04626-0.
  13. Anomalous dissipation for 1/5151/51 / 5-Hölder Euler flows. Annals of Mathematics, 182(1):127–172, 2015.
  14. A. Bressan and R. Murray. On self-similar solutions to the incompressible Euler equations. J. Differential Equations, 269(6):5142–5203, 2020. doi:10.1016/j.jde.2020.04.005.
  15. A. Bressan. A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110:97–102, 2003.
  16. A. Bressan and W. Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete Contin. Dyn. Syst., 41(1):113–130, 2021. doi:10.3934/dcds.2020168.
  17. T. Buckmaster and V. Vicol. Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci., 6(1-2):173–263, 2019. doi:10.4171/emss/34.
  18. T. Buckmaster and V. Vicol. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. of Math. (2), 189(1):101–144, 2019. doi:10.4007/annals.2019.189.1.3.
  19. T. Buckmaster and V. Vicol. Convex integration constructions in hydrodynamics. Bull. Amer. Math. Soc. (N.S.), 58(1):1–44, 2021. doi:10.1090/bull/1713.
  20. Anomalous dissipation and lack of selection in the Obukhov-Corrsin theory of scalar turbulence. Ann. PDE, 9(2):Paper No. 21, 48, 2023. doi:10.1007/s40818-023-00162-9.
  21. G. Crippa and C. De Lellis. Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math., 616:15–46, 2008. doi:10.1515/CRELLE.2008.016.
  22. A. Cheskidov and X. Luo. Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE, 7(1):Paper No. 2, 45, 2021. doi:10.1007/s40818-020-00091-x.
  23. A. Cheskidov and X. Luo. Sharp nonuniqueness for the Navier-Stokes equations. Invent. Math., 229(3):987–1054, 2022. doi:10.1007/s00222-022-01116-x.
  24. W. Cooperman. Exponential mixing by shear flows. SIAM J. Math. Anal., 55(6):7513–7528, 2023. doi:10.1137/22M1513861.
  25. Anomalous dissipation in passive scalar transport. Arch. Ration. Mech. Anal., 243(3):1151–1180, 2022. doi:10.1007/s00205-021-01736-2.
  26. N. Depauw. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan. Comptes rendus. Mathématique, 337(4):249–252, 2003. doi:10.1016/S1631-073X(03)00330-3.
  27. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3):511–547, 1989. doi:10.1007/BF01393835.
  28. C. De Lellis and V. Giri. Smoothing does not give a selection principle for transport equations with bounded autonomous fields. Annales mathématiques du Québec, 46(1):27–39, 2022. doi:10.1007/s40316-021-00160-y.
  29. C. De Lellis and L. Székelyhidi, Jr. The Euler equations as a differential inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009. doi:10.4007/annals.2009.170.1417.
  30. C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013. doi:10.1007/s00222-012-0429-9.
  31. C. De Lellis and L. Székelyhidi, Jr. High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.), 54(2):247–282, 2017. doi:10.1090/bull/1549.
  32. T. M. Elgindi and K. Liss. Norm growth, non-uniqueness, and anomalous dissipation in passive scalars. arXiv preprint arXiv:2309.08576, 2023.
  33. T. M. Elgindi and A. Zlatoš. Universal mixers in all dimensions. Adv. Math., 356:106807, 33, 2019. doi:10.1016/j.aim.2019.106807.
  34. J. Guillod and V. Šverák. Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces. ArXiv e-prints, Apr. 2017, 1704.00560.
  35. Wall to wall optimal transport. J. Fluid. Mech., 751:627–662, 2014. doi:10.1017/jfm.2014.306.
  36. Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity, 27(5):973–985, 2014. doi:10.1088/0951-7715/27/5/973.
  37. P. Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–963, 2018. doi:10.4007/annals.2018.188.3.4.
  38. H. Jia and V. Šverák. Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math., 196(1):233–265, 2014. doi:10.1007/s00222-013-0468-x.
  39. H. Jia and V. Šverák. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal., 268(12):3734–3766, 2015. doi:10.1016/j.jfa.2015.04.006.
  40. H. Koch and D. Tataru. Well-posedness for the Navier-Stokes equations. Adv. Math., 157(1):22–35, 2001. URL https://doi.org/10.1006/aima.2000.1937.
  41. A. Kumar. Three dimensional branching pipe flows for optimal scalar transport between walls. arXiv preprint arXiv:2205.03367, 2022.
  42. A. Kumar. Bulk properties and flow structures in turbulent flows. PhD thesis, University of California, Santa Cruz, 2023. URL https://escholarship.org/uc/item/47k237g4.
  43. A. Kumar. Nonuniqueness of trajectories on a set of full measure for sobolev vector fields. arXiv preprint arXiv:2301.05185, 2023.
  44. Optimal stirring strategies for passive scalar mixing. J. Fluid Mech., 675:465–476, 2011. doi:10.1017/S0022112011000292.
  45. Maximal heat transfer between two parallel plates. J. Fluid Mech., 851:R4, 14, 2018. doi:10.1017/jfm.2018.557.
  46. S. Modena and L. Székelyhidi, Jr. Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2):Art. 18, 38, 2018. doi:10.1007/s40818-018-0056-x.
  47. S. Modena and L. Székelyhidi, Jr. Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differential Equations, 58(6):Art. 208, 30, 2019. doi:10.1007/s00526-019-1651-8.
  48. S. Modena and G. Sattig. Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(5):1075–1108, 2020. doi:10.1016/j.anihpc.2020.03.002.
  49. U. Pappalettera. On measure-preserving selection of solutions of odes. arXiv preprint arXiv:2311.15661, 2023.
  50. I. Tobasco and C. R. Doering. Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett., 118(26):264502, 2017. doi:10.1103/PhysRevLett.118.264502.
  51. J.-L. Thiffeault. Using multiscale norms to quantify mixing and transport. Nonlinearity, 25(2):R1–R44, 2012. doi:10.1088/0951-7715/25/2/R1.
  52. M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, 2018, 1805.09426.
  53. M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, 2018, 1805.09440.
  54. Y. Yao and A. Zlatoš. Mixing and un-mixing by incompressible flows. J. Eur. Math. Soc. (JEMS), 19(7):1911–1948, 2017. doi:10.4171/JEMS/709.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: