Sharp Nonuniqueness in the Transport Equation with Sobolev Velocity Field (2405.01670v1)
Abstract: Given a divergence-free vector field ${\bf u} \in L\infty_t W{1,p}_x(\mathbb Rd)$ and a nonnegative initial datum $\rho_0 \in Lr$, the celebrated DiPerna--Lions theory established the uniqueness of the weak solution in the class of $L\infty_t Lr_x$ densities for $\frac{1}{p} + \frac{1}{r} \leq 1$. This range was later improved in [BCDL21] to $\frac{1}{p} + \frac{d-1}{dr} \leq 1$. We prove that this range is sharp by providing a counterexample to uniqueness when $\frac{1}{p} + \frac{d-1}{dr} > 1$. To this end, we introduce a novel flow mechanism. It is not based on convex integration, which has provided a non-optimal result in this context, nor on purely self-similar techniques, but shares features of both, such as a local (discrete) self similar nature and an intermittent space-frequency localization.
- A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS), 16(2):201–234, 2014. doi:10.4171/JEMS/431.
- Instability and nonuniqueness for the 2d2𝑑2d2 italic_d Euler equations in vorticity form, after M. Vishik, 2021, 2112.04943.
- Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Annals of Mathematics, 196(1):415 – 455, 2022. doi:10.4007/annals.2022.196.1.3.
- L. Ambrosio and G. Crippa. Continuity equations and ODE flows with non-smooth velocity. Proc. Roy. Soc. Edinburgh Sect. A, 144(6):1191–1244, 2014. doi:10.1017/S0308210513000085.
- Exponential self-similar mixing by incompressible flows. J. Amer. Math. Soc., 32(2):445–490, 2019. doi:10.1090/jams/913.
- M. Aizenman. On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. of Math. (2), 107(2):287–296, 1978. doi:10.2307/1971145.
- S. Alben. Transition to branching flows in optimal planar convection. Phys. Rev. Fluids, 8:074502, Jul 2023. doi:10.1103/PhysRevFluids.8.074502.
- L. Ambrosio. Transport equation and Cauchy problem for BV𝐵𝑉BVitalic_B italic_V vector fields. Invent. Math., 158(2):227–260, 2004. doi:10.1007/s00222-004-0367-2.
- S. Armstrong and V. Vicol. Anomalous diffusion by fractal homogenization. arXiv preprint arXiv:2305.05048, 2023.
- S. Bianchini and P. Bonicatto. A uniqueness result for the decomposition of vector fields in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Invent. Math., 220(1):255–393, 2020. doi:10.1007/s00222-019-00928-8.
- Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Arch. Ration. Mech. Anal., 240(2):1055–1090, 2021. doi:10.1007/s00205-021-01628-5.
- E. Bruè and C. De Lellis. Anomalous dissipation for the forced 3D Navier-Stokes equations. Comm. Math. Phys., 400(3):1507–1533, 2023. doi:10.1007/s00220-022-04626-0.
- Anomalous dissipation for 1/5151/51 / 5-Hölder Euler flows. Annals of Mathematics, 182(1):127–172, 2015.
- A. Bressan and R. Murray. On self-similar solutions to the incompressible Euler equations. J. Differential Equations, 269(6):5142–5203, 2020. doi:10.1016/j.jde.2020.04.005.
- A. Bressan. A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110:97–102, 2003.
- A. Bressan and W. Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete Contin. Dyn. Syst., 41(1):113–130, 2021. doi:10.3934/dcds.2020168.
- T. Buckmaster and V. Vicol. Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci., 6(1-2):173–263, 2019. doi:10.4171/emss/34.
- T. Buckmaster and V. Vicol. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. of Math. (2), 189(1):101–144, 2019. doi:10.4007/annals.2019.189.1.3.
- T. Buckmaster and V. Vicol. Convex integration constructions in hydrodynamics. Bull. Amer. Math. Soc. (N.S.), 58(1):1–44, 2021. doi:10.1090/bull/1713.
- Anomalous dissipation and lack of selection in the Obukhov-Corrsin theory of scalar turbulence. Ann. PDE, 9(2):Paper No. 21, 48, 2023. doi:10.1007/s40818-023-00162-9.
- G. Crippa and C. De Lellis. Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math., 616:15–46, 2008. doi:10.1515/CRELLE.2008.016.
- A. Cheskidov and X. Luo. Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE, 7(1):Paper No. 2, 45, 2021. doi:10.1007/s40818-020-00091-x.
- A. Cheskidov and X. Luo. Sharp nonuniqueness for the Navier-Stokes equations. Invent. Math., 229(3):987–1054, 2022. doi:10.1007/s00222-022-01116-x.
- W. Cooperman. Exponential mixing by shear flows. SIAM J. Math. Anal., 55(6):7513–7528, 2023. doi:10.1137/22M1513861.
- Anomalous dissipation in passive scalar transport. Arch. Ration. Mech. Anal., 243(3):1151–1180, 2022. doi:10.1007/s00205-021-01736-2.
- N. Depauw. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan. Comptes rendus. Mathématique, 337(4):249–252, 2003. doi:10.1016/S1631-073X(03)00330-3.
- Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3):511–547, 1989. doi:10.1007/BF01393835.
- C. De Lellis and V. Giri. Smoothing does not give a selection principle for transport equations with bounded autonomous fields. Annales mathématiques du Québec, 46(1):27–39, 2022. doi:10.1007/s40316-021-00160-y.
- C. De Lellis and L. Székelyhidi, Jr. The Euler equations as a differential inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009. doi:10.4007/annals.2009.170.1417.
- C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013. doi:10.1007/s00222-012-0429-9.
- C. De Lellis and L. Székelyhidi, Jr. High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.), 54(2):247–282, 2017. doi:10.1090/bull/1549.
- T. M. Elgindi and K. Liss. Norm growth, non-uniqueness, and anomalous dissipation in passive scalars. arXiv preprint arXiv:2309.08576, 2023.
- T. M. Elgindi and A. Zlatoš. Universal mixers in all dimensions. Adv. Math., 356:106807, 33, 2019. doi:10.1016/j.aim.2019.106807.
- J. Guillod and V. Šverák. Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces. ArXiv e-prints, Apr. 2017, 1704.00560.
- Wall to wall optimal transport. J. Fluid. Mech., 751:627–662, 2014. doi:10.1017/jfm.2014.306.
- Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity, 27(5):973–985, 2014. doi:10.1088/0951-7715/27/5/973.
- P. Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–963, 2018. doi:10.4007/annals.2018.188.3.4.
- H. Jia and V. Šverák. Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math., 196(1):233–265, 2014. doi:10.1007/s00222-013-0468-x.
- H. Jia and V. Šverák. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal., 268(12):3734–3766, 2015. doi:10.1016/j.jfa.2015.04.006.
- H. Koch and D. Tataru. Well-posedness for the Navier-Stokes equations. Adv. Math., 157(1):22–35, 2001. URL https://doi.org/10.1006/aima.2000.1937.
- A. Kumar. Three dimensional branching pipe flows for optimal scalar transport between walls. arXiv preprint arXiv:2205.03367, 2022.
- A. Kumar. Bulk properties and flow structures in turbulent flows. PhD thesis, University of California, Santa Cruz, 2023. URL https://escholarship.org/uc/item/47k237g4.
- A. Kumar. Nonuniqueness of trajectories on a set of full measure for sobolev vector fields. arXiv preprint arXiv:2301.05185, 2023.
- Optimal stirring strategies for passive scalar mixing. J. Fluid Mech., 675:465–476, 2011. doi:10.1017/S0022112011000292.
- Maximal heat transfer between two parallel plates. J. Fluid Mech., 851:R4, 14, 2018. doi:10.1017/jfm.2018.557.
- S. Modena and L. Székelyhidi, Jr. Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2):Art. 18, 38, 2018. doi:10.1007/s40818-018-0056-x.
- S. Modena and L. Székelyhidi, Jr. Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differential Equations, 58(6):Art. 208, 30, 2019. doi:10.1007/s00526-019-1651-8.
- S. Modena and G. Sattig. Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(5):1075–1108, 2020. doi:10.1016/j.anihpc.2020.03.002.
- U. Pappalettera. On measure-preserving selection of solutions of odes. arXiv preprint arXiv:2311.15661, 2023.
- I. Tobasco and C. R. Doering. Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett., 118(26):264502, 2017. doi:10.1103/PhysRevLett.118.264502.
- J.-L. Thiffeault. Using multiscale norms to quantify mixing and transport. Nonlinearity, 25(2):R1–R44, 2012. doi:10.1088/0951-7715/25/2/R1.
- M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, 2018, 1805.09426.
- M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, 2018, 1805.09440.
- Y. Yao and A. Zlatoš. Mixing and un-mixing by incompressible flows. J. Eur. Math. Soc. (JEMS), 19(7):1911–1948, 2017. doi:10.4171/JEMS/709.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.