Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gluon Mass Generation from Renormalons and Resurgence (2405.01639v1)

Published 2 May 2024 in hep-th, hep-lat, math-ph, and math.MP

Abstract: We establish a link between the concepts of infrared renormalons, infrared fixed point, and dynamical nonperturbative mass generation of gluons in pure Yang-Mills theories. By utilizing recent results in the resurgent analysis of renormalons through non-linear ordinary differential equations, we develop a new description for the gluon propagator, thereby realizing the Schwinger mechanism. Specifically, this approach leads to a nonperturbative, dynamic mass generation for Yang-Mills gauge bosons in the deep infrared region, a phenomenon closely associated with color confinement. Furthermore, we present arguments about the limit of applicability of the Borel-Ecalle resummation of the renormalons by comparing it with the Kallen-Lehman representation of the gluon propagator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. G. ’t Hooft, “Can We Make Sense Out of Quantum Chromodynamics?”, Subnucl. Ser. 15 (1979) 943.
  2. M. Beneke, “Renormalons”, Phys. Rept. 317 (1999) 1–142, arXiv:hep-ph/9807443.
  3. G. Abbas, B. Ananthanarayan, I. Caprini, and J. Fischer, “Perturbative expansion of the QCD Adler function improved by renormalization-group summation and analytic continuation in the Borel plane”, Phys. Rev. D 87 no. 1, (2013) 014008, arXiv:1211.4316 [hep-ph].
  4. A. Maiezza and J. C. Vasquez, “Renormalons in a general Quantum Field Theory”, Annals Phys. 394 (2018) 84–97, arXiv:1802.06022 [hep-th].
  5. G. Cvetič, “Renormalon-based resummation for QCD observables”, Nucl. Part. Phys. Proc. 309-311 (2020) 87–92, arXiv:1909.13593 [hep-ph].
  6. M. Correa, M. Loewe, D. Valenzuela, and R. Zamora, “Magnetic renormalons in a scalar self interacting λ⁢ϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory”, Phys. Rev. D 99 no. 9, (2019) 096024, arXiv:1901.06426 [hep-ph].
  7. D. Boito and I. Caprini, “Renormalons and hyperasymptotics in QCD”, Eur. Phys. J. ST 230 no. 12, (2021) 2561–2563.
  8. M. Loewe, L. Monje, and R. Zamora, “Thermomagnetic renormalons in a scalar self-interacting λ𝜆\lambdaitalic_λϕitalic-ϕ\phiitalic_ϕ4 theory”, Phys. Rev. D 104 no. 1, (2021) 016020, arXiv:2105.01156 [hep-ph].
  9. C. Ayala, G. Cvetic, and D. Teca, “Determination of perturbative QCD coupling from ALEPH τ𝜏\tauitalic_τ decay data using pinched Borel–Laplace and Finite Energy Sum Rules”, Eur. Phys. J. C 81 no. 10, (2021) 930, arXiv:2105.00356 [hep-ph].
  10. M. Loewe and R. Zamora, “Renormalons in a scalar self-interacting theory: Thermal, thermomagnetic, and thermoelectric corrections for all values of the temperature”, Phys. Rev. D 105 no. 7, (2022) 076011, arXiv:2202.08873 [hep-ph].
  11. C. Ayala, G. Cvetic, and D. Teca, “Borel–Laplace sum rules with τ𝜏\tauitalic_τ decay data, using OPE with improved anomalous dimensions”, J. Phys. G 50 no. 4, (2023) 045004, arXiv:2206.05631 [hep-ph].
  12. I. Caprini, “Revisiting the convergence of the perturbative QCD expansions based on conformal mapping of the Borel plane”, Phys. Rev. D 108 no. 11, (2023) 114031, arXiv:2312.07143 [hep-ph].
  13. G. Parisi, “The Borel Transform and the Renormalization Group”, Phys. Rept. 49 (1979) 215–219.
  14. O. Costin International Mathematics Research Notices 1995 no. 8, (1995) 377. https://doi.org/10.1155/s1073792895000286.
  15. O. Costin, “On borel summation and stokes phenomena for rank- 1111 nonlinear systems of ordinary differential equations”, Duke Math. J. 93 no. 2, (06, 1998) 289–344. https://doi.org/10.1215/S0012-7094-98-09311-5.
  16. O. Costin, “Asymptotics and borel summability. monographs and surveys in pure and applied mathematics. chapman and hall/crc (2008)”, Monographs and Surveys in Pure and Applied Mathematics (2008) .
  17. J. Bersini, A. Maiezza, and J. C. Vasquez, “Resurgence of the Renormalization Group Equation”, Annals Phys. 415 (2020) 168126, arXiv:1910.14507 [hep-th].
  18. A. Maiezza and J. C. Vasquez, “Resurgence of the QCD Adler function”, Phys. Lett. B 817 (2021) 136338, arXiv:2104.03095 [hep-ph].
  19. A. Maiezza and J. C. Vasquez, “The QCD Adler Function and the Muon g −-- 2 Anomaly from Renormalons”, Symmetry 14 no. 9, (2022) 1878, arXiv:2111.06792 [hep-ph].
  20. I. Caprini, “Resurgent representation of the Adler function in the large-β𝛽\betaitalic_β0 approximation of QCD”, Phys. Rev. D 107 no. 7, (2023) 074035, arXiv:2304.03504 [hep-ph].
  21. J. Écalle, “Six lectures on transseries, analysable functions and the constructive proof of dulac’s conjecture”,. https://doi.org/10.1007/978-94-015-8238-4_3.
  22. D. Sauzin, “Resurgent functions and splitting problems”, 2007.
  23. D. Dorigoni, “An Introduction to Resurgence, Trans-Series and Alien Calculus”, Annals Phys. 409 (2019) 167914, arXiv:1411.3585 [hep-th].
  24. I. Aniceto, G. Basar, and R. Schiappa, “A Primer on Resurgent Transseries and Their Asymptotics”, Phys. Rept. 809 (2019) 1–135, arXiv:1802.10441 [hep-th].
  25. G. V. Dunne and M. Ünsal, “Generating nonperturbative physics from perturbation theory”, Phys. Rev. D 89 no. 4, (2014) 041701, arXiv:1306.4405 [hep-th].
  26. M. Borinsky, “Renormalized asymptotic enumeration of Feynman diagrams”, Annals Phys. 385 (2017) 95–135, arXiv:1703.00840 [hep-th].
  27. A. Maiezza and J. C. Vasquez, “Non-local Lagrangians from Renormalons and Analyzable Functions”, Annals Phys. 407 (2019) 78–91, arXiv:1902.05847 [hep-th].
  28. P. J. Clavier, “Borel-Ecalle resummation of a two-point function”, arXiv:1912.03237 [math-ph].
  29. M. Borinsky and G. V. Dunne, “Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations”, arXiv:2005.04265 [hep-th].
  30. T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, and T. Yoda, “Quantum phase transition and resurgence: Lessons from three-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric quantum electrodynamics”, PTEP 2021 no. 10, (2021) 103B04, arXiv:2103.13654 [hep-th].
  31. M. Borinsky and D. Broadhurst, “Resonant resurgent asymptotics from quantum field theory”, Nucl. Phys. B 981 (2022) 115861, arXiv:2202.01513 [hep-th].
  32. E. Laenen, C. Marinissen, and M. Vonk, “Resurgence analysis of the Adler function at order 1/Nf21superscriptsubscript𝑁𝑓21/N_{f}^{2}1 / italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT”, arXiv:2302.13715 [hep-ph].
  33. J. S. Schwinger, “Gauge Invariance and Mass”, Phys. Rev. 125 (1962) 397–398.
  34. J. S. Schwinger, “Gauge Invariance and Mass. 2.”, Phys. Rev. 128 (1962) 2425–2429.
  35. I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, “The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes”, PoS LATTICE2007 (2007) 290, arXiv:0710.1968 [hep-lat].
  36. A. G. Duarte, O. Oliveira, and P. J. Silva, “Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-Mills Theory: Finite Lattice Spacing and Volume Effects”, Phys. Rev. D 94 no. 1, (2016) 014502, arXiv:1605.00594 [hep-lat].
  37. A. C. Aguilar, A. A. Natale, and P. S. R. da Silva, “Relating a gluon mass scale to an infrared fixed point in pure gauge qcd”, Phys. Rev. Lett. 90 (Apr, 2003) 152001. https://link.aps.org/doi/10.1103/PhysRevLett.90.152001.
  38. J. M. Cornwall, “Dynamical mass generation in continuum quantum chromodynamics”, Phys. Rev. D 26 (Sep, 1982) 1453–1478. https://link.aps.org/doi/10.1103/PhysRevD.26.1453.
  39. A. C. Aguilar and A. A. Natale, “A Dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations”, JHEP 08 (2004) 057, arXiv:hep-ph/0408254.
  40. A. C. Aguilar and A. A. Natale, “A Dynamical gluon mass solution in Mandelstam’s approximation”, Int. J. Mod. Phys. A 20 (2005) 7613–7632, arXiv:hep-ph/0405024.
  41. A. C. Aguilar, D. Binosi, and J. Papavassiliou, “The Gluon Mass Generation Mechanism: A Concise Primer”, Front. Phys. (Beijing) 11 no. 2, (2016) 111203, arXiv:1511.08361 [hep-ph].
  42. A. Maiezza and J. C. Vasquez, “Resurgence and self-completion in renormalized gauge theories”, International Journal of Modern Physics A (11, 2024) , arXiv:2311.10393 [hep-th]. https://doi.org/10.1142/S0217751X24500258.
  43. S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 1985.
  44. J. M. Cornwall and J. Papavassiliou, “Gauge-invariant three-gluon vertex in qcd”, Phys. Rev. D 40 (Nov, 1989) 3474–3485. https://link.aps.org/doi/10.1103/PhysRevD.40.3474.
  45. M. Frasca, “Infrared Gluon and Ghost Propagators”, Phys. Lett. B 670 (2008) 73–77, arXiv:0709.2042 [hep-th].
  46. A. Weber, “The Infrared fixed point of Landau gauge Yang-Mills theory: A renormalization group analysis”, J. Phys. Conf. Ser. 378 (2012) 012042, arXiv:1205.0491 [hep-th].
  47. P.-H. Balduf, “Dyson–Schwinger Equations in Minimal Subtraction”, Annales de l’Institut Henri Poincaré D (2023) . https://ems.press/journals/aihpd/articles/10239304.
  48. D. Kreimer and K. Yeats, “An Etude in Non-Linear Dyson–Schwinger Equations”, Nuclear Physics B - Proceedings Supplements 160 (2006) 116–121. http://www.sciencedirect.com/science/article/pii/S0920563206006347. Proceedings of the 8th DESY Workshop on Elementary Particle Theory.
  49. D. Kreimer and K. Yeats, “Recursion and Growth Estimates in Renormalizable Quantum Field Theory”, Communications in Mathematical Physics 279 no. 2, (2008) 401–427, hep-th/0612179. https://doi.org/10.1007/s00220-008-0431-7.
  50. G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, “The QED beta-function from global solutions to Dyson-Schwinger equations”, Annals Phys. 324 (2009) 205–219, arXiv:0805.0826 [hep-th].
  51. K. Yeats, “Growth Estimates for Dyson-Schwinger Equations”, arXiv:0810.2249 [math-ph]. http://arxiv.org/abs/0810.2249. arXiv:0810.2249 [math-ph].
  52. Aspects of Mathematics E38. Vieweg Verlag, Wiesbaden, 2008. http://preprints.ihes.fr/2006/P/P-06-23.pdf.
  53. G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, “The QCD beta-function from global solutions to Dyson-Schwinger equations”, Annals Phys. 325 (2010) 300–324, arXiv:0906.1754 [hep-th].
  54. L. Klaczynski and D. Kreimer, “Avoidance of a Landau Pole by Flat Contributions in QED”, Annals Phys. 344 (2014) 213–231, arXiv:1309.5061 [hep-th].
  55. D. J. Broadhurst, “Large N expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops”, Z. Phys. C 58 (1993) 339–346.
  56. 1976.
  57. I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, “Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared”, Phys. Lett. B 676 (2009) 69–73, arXiv:0901.0736 [hep-lat].
  58. C. Ayala, G. Cvetic, R. Kogerler, and I. Kondrashuk, “Nearly perturbative lattice-motivated QCD coupling with zero IR limit”, J. Phys. G 45 no. 3, (2018) 035001, arXiv:1703.01321 [hep-ph].
  59. M. P. Bellon and P. J. Clavier, “Analyticity domain of a Quantum Field Theory and Accelero-summation”, Lett. Math. Phys. 109 no. 9, (2019) 2003–2011, arXiv:1806.08254 [hep-ph].
  60. U. Aglietti and Z. Ligeti, “Renormalons and confinement”, Phys. Lett. B 364 (1995) 75, arXiv:hep-ph/9503209.
  61. M. Chaichian and K. Nishijima, “Does color confinement imply massive gluons?”, Eur. Phys. J. C 47 (2006) 737–743, arXiv:hep-th/0504050.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 9 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube