Performance Analysis of Reconfigurable Holographic Surfaces in the Near-Field Scenario of Cell-Free Networks Under Hardware Impairments (2405.01150v1)
Abstract: We propose a hybrid beamforming architecture for near-field reconfigurable holographic surfaces (RHS) harnessed in cell-free networks. Specifically, the holographic beamformer of each base station (BS) is designed for maximizing the channel gain based on the local channel state information (CSI). By contrast, the digital beamformer at the central processing unit is designed based on the minimum mean squared error criterion. Furthermore, the near-field spectral efficiency of the RHS in cell-free networks is derived theoretically by harnessing the popular stochastic geometry approach. We consider both the phase shift error (PSE) at the RHS elements and the hardware impairment (HWI) at the radio frequency (RF) chains of the transceivers. Furthermore, we theoretically derive the asymptotic capacity bound, when considering an infinite physical size for the RHS in the near-field channel model. The theoretical analysis and simulation results show that the PSE at the RHS elements and the HWI at the RF chains of transceivers limit the spectral efficiency in the high signal-to-noise ratio region. Moreover, we show that the PSE at the RHS elements and the HWI at the RF chains of BSs can be compensated by increasing the number of BSs. Finally, we also demonstrate that the ergodic spectral efficiency based on the near-field channel model is higher than that based on the far-field channel model assumption.
- Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir, “Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-dense network,” IEEE Wireless commun., vol. 22, no. 5, pp. 13–21, 2015.
- Z. Huang, X. Cheng, and X. Yin, “A general 3D non-stationary 6G channel model with time-space consistency,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3436–3450, 2022.
- R. Deng, Y. Zhang, H. Zhang, B. Di, H. Zhang, and L. Song, “Reconfigurable holographic surface: A new paradigm to implement holographic radio,” IEEE Veh. Technol. Mag., vol. 18, no. 1, pp. 20–28, 2023.
- W. Tang, X. Chen, M. Z. Chen, J. Y. Dai, Y. Han, M. Di Renzo, S. Jin, Q. Cheng, and T. J. Cui, “Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6259–6276, 2022.
- T. Gong, P. Gavriilidis, R. Ji, C. Huang, G. C. Alexandropoulos, L. Wei, Z. Zhang, M. Debbah, H. V. Poor, and C. Yuen, “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Commun. Surv. & Tut., vol. 26, no. 1, pp. 196–257, 2024.
- A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, 2020.
- Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, 2022.
- J. An, C. Yuen, C. Huang, M. Debbah, H. V. Poor, and L. Hanzo, “A tutorial on holographic MIMO communications-Part I: Channel modeling and channel estimation,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1664–1668, 2023.
- J. An, C. Yuen, L. Dai, M. Di Renzo, M. Debbah, and L. Hanzo, “Toward beamfocusing-aided near-field communications: Research advances, potential, and challenges,” arXiv preprint arXiv:2309.09242, 2023.
- J. An, C. Yuen, C. Huang, M. Debbah, H. V. Poor, and L. Hanzo, “A tutorial on holographic MIMO communications-Part II: Performance analysis and holographic beamforming,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1669–1673, 2023.
- H. Zhang, H. Zhang, B. Di, M. Di Renzo, Z. Han, H. V. Poor, and L. Song, “Holographic integrated sensing and communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2114–2130, 2022.
- L. Wei, C. Huang, G. C. Alexandropoulos, E. Wei, Z. Zhang, M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Top. Sign. Proces., vol. 16, no. 5, pp. 1112–1124, 2022.
- L. Wei, C. Huang, G. C. Alexandropoulos, Z. Yang, J. Yang, E. Wei, Z. Zhang, M. Debbah, and C. Yuen, “Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8828–8842, 2023.
- R. Deng, B. Di, H. Zhang, and L. Song, “HDMA: Holographic-pattern division multiple access,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1317–1332, 2022.
- Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user continuous-aperture MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2350–2366, 2023.
- R. Deng, B. Di, H. Zhang, Y. Tan, and L. Song, “Reconfigurable holographic surface-enabled multi-user wireless communications: Amplitude-controlled holographic beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6003–6017, 2022.
- ——, “Reconfigurable holographic surface: Holographic beamforming for metasurface-aided wireless communications,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6255–6259, 2021.
- X. Hu, R. Deng, B. Di, H. Zhang, and L. Song, “Holographic beamforming for ultra massive MIMO with limited radiation amplitudes: How many quantized bits do we need?” IEEE Commun. Lett., vol. 26, no. 6, pp. 1403–1407, 2022.
- J. An, C. Xu, D. W. K. Ng, G. C. Alexandropoulos, C. Huang, C. Yuen, and L. Hanzo, “Stacked intelligent metasurfaces for efficient holographic MIMO communications in 6G,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2380–2396, 2023.
- H. Wu, Y. Chen, Y. Ming, and Z. Wang, “Two-timescale beamforming optimization for downlink multi-user holographic MIMO surfaces,” IEEE Trans. Veh. Technol., vol. 73, no. 3, pp. 4476–4481, 2024.
- S. Zeng, H. Zhang, B. Di, H. Qin, X. Su, and L. Song, “Reconfigurable refractive surfaces: An energy-efficient way to holographic MIMO,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2490–2494, 2022.
- S. Chen, J. Zhang, E. Björnson, and B. Ai, “Improving fairness for cell-free massive MIMO through interference-aware massive access,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5468–5472, 2023.
- E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, 2020.
- J. Zhang, J. Zhang, E. Björnson, and B. Ai, “Local partial zero-forcing combining for cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8459–8473, 2021.
- X. Ma, D. Zhang, M. Xiao, C. Huang, and Z. Chen, “Cooperative beamforming for RIS-aided cell-free massive MIMO networks,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7243–7258, 2023.
- W. Xu, J. An, H. Li, L. Gan, and C. Yuen, “Algorithm unrolling-based distributed optimization for RIS-assisted cell-free networks,” IEEE Internet Things J., vol. 11, no. 1, pp. 944–957, 2024.
- J. An, C. Yuen, C. Xu, H. Li, D. W. K. Ng, M. Di Renzo, M. Debbah, and L. Hanzo, “Stacked intelligent metasurface-aided MIMO transceiver design,” arXiv preprint arXiv:2311.09814, 2023.
- M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 184–188, 2019.
- A. Papazafeiropoulos, C. Pan, P. Kourtessis, S. Chatzinotas, and J. M. Senior, “Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2077–2092, 2021.
- M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, 2009.
- E. Björnson, J. Hoydis, L. Sanguinetti et al., “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
- E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112–7139, 2014.
- X. Qian, M. Di Renzo, J. Liu, A. Kammoun, and M.-S. Alouini, “Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise,” IEEE Wireless Commun. Lett., vol. 10, no. 1, pp. 77–81, 2020.
- H. Zhang and B. Di, “Intelligent omni-surfaces: Simultaneous refraction and reflection for full-dimensional wireless communications,” IEEE Commun. Surv. & Tutor., vol. 24, no. 4, pp. 1997–2028, 2022.
- M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, 2022.
- H. Lu and Y. Zeng, “Communicating with extremely large-scale array/surface: Unified modeling and performance analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4039–4053, 2021.
- ——, “Near-field modeling and performance analysis for multi-user extremely large-scale MIMO communication,” IEEE Commun. Lett., vol. 26, no. 2, pp. 277–281, 2021.
- T. Hillen, K. J. Painter, A. C. Swan, and A. D. Murtha, “Moments of von Mises and Fisher distributions and applications,” Mathematical biosciences and engineering, vol. 14, no. 3, pp. 673–694, 2017.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.