Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decoherence by warm horizons

Published 1 May 2024 in hep-th, gr-qc, and quant-ph | (2405.00804v2)

Abstract: Recently Danielson, Satishchandran, and Wald (DSW) have shown that quantum superpositions held outside of Killing horizons will decohere at a steady rate. This occurs because of the inevitable radiation of soft photons (gravitons), which imprint a electromagnetic (gravitational) ``which-path'' memory onto the horizon. Rather than appealing to this global description, an experimenter ought to also have a local description for the cause of decoherence. One might intuitively guess that this is just the bombardment of Hawking/Unruh radiation on the system, however simple calculations challenge this idea -- the same superposition held in a finite temperature inertial laboratory does not decohere at the DSW rate. In this work we provide a local description of the decoherence by mapping the DSW set-up onto a worldline-localized model resembling an Unruh-DeWitt particle detector. We present an interpretation in terms of random local forces which do not sufficiently self-average over long times. Using the Rindler horizon as a concrete example we clarify the crucial role of temperature, and show that the Unruh effect is the only quantum mechanical effect underlying these random forces. A general lesson is that for an environment which induces Ohmic friction on the central system (as one gets from the classical Abraham-Lorentz-Dirac force, in an accelerating frame) the fluctuation-dissipation theorem implies that when this environment is at finite temperature it will cause steady decoherence on the central system. Our results agree with DSW and provide the complementary local perspective.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. D. L. Danielson, G. Satishchandran, and R. M. Wald, Black holes decohere quantum superpositions, Int. J. Mod. Phys. D 31, 2241003 (2022a), arXiv:2205.06279 [hep-th] .
  2. D. L. Danielson, G. Satishchandran, and R. M. Wald, Killing horizons decohere quantum superpositions, Phys. Rev. D 108, 025007 (2023), arXiv:2301.00026 [hep-th] .
  3. D. L. Danielson, G. Satishchandran, and R. M. Wald, Gravitationally mediated entanglement: Newtonian field versus gravitons, Phys. Rev. D 105, 086001 (2022b), arXiv:2112.10798 [quant-ph] .
  4. S. E. Gralla and H. Wei, Decoherence from horizons: General formulation and rotating black holes, Phys. Rev. D 109, 065031 (2024), arXiv:2311.11461 [hep-th] .
  5. W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14, 870 (1976).
  6. B. DeWitt, Quantum gravity: the new synthesis, in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel (Univ. Pr., Cambridge, UK, 1979) pp. 680–745.
  7. T. H. Boyer, Thermal effects of acceleration through random classical radiation, Phys. Rev. D 21, 2137 (1980).
  8. T. H. Boyer, Thermal effects of acceleration for a classical dipole oscillator in classical electromagnetic zero-point radiation, Phys. Rev. D 29, 1089 (1984).
  9. P. Kok and U. Yurtsever, Gravitational decoherence, Phys. Rev. D 68, 085006 (2003).
  10. H. Xu, Decoherence and thermalization of Unruh-DeWitt detector in arbitrary dimensions, JHEP 03, 179, arXiv:2301.12381 [hep-th] .
  11. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  12. R. P. Feynman and F. L. Vernon, Jr., The Theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24, 118 (1963).
  13. L. H. Ford, Electromagnetic vacuum fluctuations and electron coherence: 2. 2: Effects of wave packet size, Phys. Rev. A 56, 1812 (1997), arXiv:quant-ph/9704035 .
  14. W. D. Goldberger and I. Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73, 104029 (2006), arXiv:hep-th/0409156 .
  15. W. D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev. D 81, 124015 (2010), arXiv:0912.4254 [gr-qc] .
  16. A. Ross, Multipole expansion at the level of the action, Phys. Rev. D 85, 125033 (2012), arXiv:1202.4750 [gr-qc] .
  17. P. M. V. B. Barone and A. O. Caldeira, Quantum mechanics of radiation damping, Phys. Rev. A 43, 57 (1991).
  18. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 1984).
  19. J. Wilson-Gerow, C. DeLisle, and P. Stamp, A functional approach to soft graviton scattering and BMS charges, Class. Quant. Grav. 35, 164001 (2018), arXiv:1808.01372 [gr-qc] .
  20. C. DeLisle and P. C. E. Stamp, Decoherence of a 2-Path System by Infrared Photons,   (2022), arXiv:2211.05813 [quant-ph] .
  21. D. Neuenfeld, Infrared-safe scattering without photon vacuum transitions and time-dependent decoherence, JHEP 11, 189, arXiv:1810.11477 [hep-th] .
  22. W. Zurek, Reduction of the wavepacket: how long does it take?, in Non-Equilibrium Quabntum Statistical Physics, edited by G. Moore and M. Scully (Plenum, New York, 1984) p. 145.
  23. A. Schmid, On a quasiclassical Langevin equation, Journal of Low Temperature Physics 49, 609 (1982).
  24. C. R. Galley, B. L. Hu, and S.-Y. Lin, Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space, Phys. Rev. D 74, 024017 (2006), arXiv:gr-qc/0603099 .
  25. J. S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2, 407 (1961).
  26. L. V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).
Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 15 likes about this paper.