Papers
Topics
Authors
Recent
2000 character limit reached

Calibration of the rating transition model for high and low default portfolios (2405.00576v1)

Published 1 May 2024 in q-fin.RM and stat.ME

Abstract: In this paper we develop Maximum likelihood (ML) based algorithms to calibrate the model parameters in credit rating transition models. Since the credit rating transition models are not Gaussian linear models, the celebrated Kalman filter is not suitable to compute the likelihood of observed migrations. Therefore, we develop a Laplace approximation of the likelihood function and as a result the Kalman filter can be used in the end to compute the likelihood function. This approach is applied to so-called high-default portfolios, in which the number of migrations (defaults) is large enough to obtain high accuracy of the Laplace approximation. By contrast, low-default portfolios have a limited number of observed migrations (defaults). Therefore, in order to calibrate low-default portfolios, we develop a ML algorithm using a particle filter (PF) and Gaussian process regression. Experiments show that both algorithms are efficient and produce accurate approximations of the likelihood function and the ML estimates of the model parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Credit barrier models. Risk, 16(6):109–109, 2003.
  2. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 92:423–438, 04 2004. doi: 10.1109/JPROC.2003.823142.
  3. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002.
  4. M. Avellaneda and J. Zhu. Distance to default. Risk, 14(12):125–129, 2001.
  5. Ratings migration and the business cycle, with application to credit portfolio stress testing. Journal of banking & finance, 26(2-3):445–474, 2002.
  6. Time series: theory and methods. Springer Series in Statistics. Springer, New York, 2006. ISBN 978-1-4419-0319-8; 1-4419-0319-8. Reprint of the second (1991) edition.
  7. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924, 2007.
  8. SMC2superscriptSMC2{\rm SMC}^{2}roman_SMC start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statstical Society. Series B. (Methodological), 75(3):397–426, 2013. URL https://doi.org/10.1111/j.1467-9868.2012.01046.x.
  9. C.K. Chui and G. Chen. Kalman filtering with real-time applications. Springer, Cham, Fifth edition, 2017. doi: 10.1007/978-3-319-47612-4. URL https://doi.org/10.1007/978-3-319-47612-4.
  10. P. Crosbie and J. Bohn. Modelling default risk, 2003. URL https://www.moodysanalytics.com/-/media/whitepaper/before-2011/12-18-03-modeling-default-risk.pdf.
  11. Maximum likelihood estimate of default correlations. Available at SSRN 1032590, 2007.
  12. A. Doucet. Monte Carlo methods for Bayesian estimation of hidden Markov models. Application to radiation signals. PhD thesis, Univ. Paris-Sud, Orsay, 1997.
  13. A. Doucet and A.M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In The Oxford handbook of nonlinear filtering, pages 656–704. Oxford Univ. Press, Oxford, 2011.
  14. D. Duffie and K.J. Singleton. Credit risk: pricing, measurement, and management. Princeton University Press, 2004.
  15. J. Durbin and S.J. Koopman. Time series analysis by state space methods. Oxford University Press, 2012.
  16. Robust extended Kalman filtering. IEEE Transactions on Signal Processing, 47(9):2596–2599, 1999.
  17. R. Frey and A.J. McNeil. Dependence modelling, model risk and model calibration in models of portfolio credit risk. Preprint, 2002.
  18. P. Gagliardini and C. Gouriéroux. Stochastic migration models with application to corporate risk. Journal of Financial Econometrics, 3(2):188–226, 2005.
  19. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE proceedings F (radar and signal processing), volume 140, pages 107–113. IET, 1993.
  20. M. Gordy and E. Heitfield. Estimating default correlations from short panels of credit rating performance data. Unpublished Working Paper, 2002.
  21. G.B. Gorton and P. He. Bank credit cycles. The Review of Economic Studies, 75(4):1181–1214, 2008.
  22. A kalman particle filter for online parameter estimation with applications to affine models. Statistical Inference for Stochastic Processes, 24:353–403, 2021.
  23. A dimension reduction approach for loss valuation in credit risk modeling. International Journal of Financial Engineering, 2023. doi: 10.1142/S2424786323500585. URL https://doi.org/10.1142/S2424786323500585.
  24. Valuing credit default swaps II: Modeling default correlations. The Journal of derivatives, 8(3):12–21, 2001.
  25. Credit Suisse First Boston International. Creditrisk+ - a credit risk management framework, 1997.
  26. R. Jarrow. Credit risk: Drawing the analogy. Risk Magazine, 5(9), 1992.
  27. R. Jarrow and S. Turnbull. Pricing derivatives on financial securities subject to credit risk. The journal of finance, 50(1):53–85, 1995.
  28. An overview of sequential monte carlo methods for parameter estimation in general state-space models. IFAC Proceedings Volumes, 42(10):774–785, 2009. ISSN 1474-6670. doi: https://doi.org/10.3182/20090706-3-FR-2004.00129. URL https://www.sciencedirect.com/science/article/pii/S1474667016387432. 15th IFAC Symposium on System Identification.
  29. S.J. Koopman and A. Lucas. Business and default cycles for credit risk. Journal of Applied Econometrics, 20(2):311–323, 2005.
  30. Empirical credit cycles and capital buffer formation. Journal of Banking & Finance, 29(12):3159–3179, 2005. ISSN 0378-4266. doi: https://doi.org/10.1016/j.jbankfin.2005.01.003. URL https://www.sciencedirect.com/science/article/pii/S0378426605000191.
  31. The multi-state latent factor intensity model for credit rating transitions. Journal of Econometrics, 142(1):399–424, 2008.
  32. Y. Luo and R. Duraiswami. Fast near-grid gaussian process regression. In Artificial Intelligence and Statistics, pages 424–432. PMLR, 2013.
  33. Bayesian inference for generalized linear mixed models of portfolio credit risk. Journal of Empirical Finance, 14(2):131–149, 2007.
  34. R.C. Merton. On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2):449–470, 1974.
  35. Stability of rating transitions. Journal of Banking & Finance, 24(1-2):203–227, 2000.
  36. M. Pitt. Smooth particle filters for likelihood evaluation and maximisation. The warwick economics research paper series (twerps), University of Warwick, Department of Economics, 02 2002.
  37. M.K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 94(446):590–599, 1999. ISSN 0162-1459. doi: 10.2307/2670179. URL https://doi.org/10.2307/2670179.
  38. Particle methods for optimal filter derivative: application to parameter estimation. In Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., volume 5, pages v/925–v/928 Vol. 5, 2005. doi: 10.1109/ICASSP.2005.1416456.
  39. S.J. Press. Subjective and objective Bayesian statistics. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, Second edition, 2003. ISBN 0-471-34843-0. Principles, models, and applications, With contributions by Siddhartha Chib, Merlise Clyde, George Woodworth and Alan Zaslavsky.
  40. C. K. I. Rasmussen, C. E.and Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.
  41. RiskMetrics-Group. CreditMetrics - Technical document. J.P. Morgan & Company, 1997. URL https://www.msci.com/documents/10199/93396227-d449-4229-9143-24a94dab122f.
  42. C.P. Robert. The Bayesian choice. Springer Texts in Statistics. Springer, New York, second edition, 2007. ISBN 978-0-387-71598-8. From decision-theoretic foundations to computational implementation.
  43. Y. Saatçi. Scalable Inference for Structured Gaussian Process Models. PhD thesis, Citeseer, 11 2011.
  44. D. Simons and F. Rolwes. Macroeconomic default modeling and stress testing. Eighteenth issue (September 2009) of the International Journal of Central Banking, 2018.
  45. J.H. van Schuppen. Stochastic realization problems. In Stochastic realization problemsy, volume 135 of Lect. Notes Control Inf. Sci., pages 480–523. Springer, Berlin, 1989. doi: 10.1007/BFb0008474. URL https://doi.org/10.1007/BFb0008474.
  46. O. Vasicek. The distribution of loan portfolio value. Risk, 15(12):160–162, 2002.
  47. Dual Extended Kalman Filter Methods, chapter 5, pages 123–173. John Wiley & Sons, Ltd, 2002. ISBN 9780471221548. doi: 10.1002/0471221546.ch5. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221546.ch5.
  48. The Unscented Kalman Filter, chapter 7, pages 221–280. John Wiley & Sons, Ltd, 2002. ISBN 9780471221548. doi: 10.1002/0471221546.ch7. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221546.ch7.
  49. J. Wendin and A.J. McNeil. Dependent credit migrations. Journal of credit risk, 2(3):87–114, 2006.
  50. Parameter estimation for discrete-time nonlinear systems using em. IFAC Proceedings Volumes, 41(2):4012–4017, 01 2008. doi: https://doi.org/10.3182/20080706-5-KR-1001.00675. 17th IFAC World Congress.
  51. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. arXiv preprint arXiv:1108.6296, 2011.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.