Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory (2405.00161v4)

Published 30 Apr 2024 in econ.EM and stat.ME

Abstract: Analyses of heterogeneous treatment effects (HTE) are common in applied causal inference research. However, when outcomes are latent variables assessed via psychometric instruments such as educational tests, standard methods ignore the potential HTE that may exist among the individual items of the outcome measure. Failing to account for "item-level" HTE (IL-HTE) can lead to both underestimated standard errors and identification challenges in the estimation of treatment-by-covariate interaction effects. We demonstrate how Item Response Theory (IRT) models that estimate a treatment effect for each assessment item can both address these challenges and provide new insights into HTE generally. This study articulates the theoretical rationale for the IL-HTE model and demonstrates its practical value using 75 datasets from 48 randomized controlled trials containing 5.8 million item responses in economics, education, and health research. Our results show that the IL-HTE model reveals item-level variation masked by single-number scores, provides more meaningful standard errors in many settings, allows for estimates of the generalizability of causal effects to untested items, resolves identification problems in the estimation of interaction effects, and provides estimates of standardized treatment effect sizes corrected for attenuation due to measurement error.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 posts and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube