Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Detecting Spectral Breaks in Spiked Covariance Models (2404.19176v1)

Published 30 Apr 2024 in math.ST and stat.TH

Abstract: In this paper, the key objects of interest are the sequential covariance matrices $\mathbf{S}{n,t}$ and their largest eigenvalues. Here, the matrix $\mathbf{S}{n,t}$ is computed as the empirical covariance associated with observations ${\mathbf{x}1,\ldots,\mathbf{x}{ \lfloor nt \rfloor } }$, for $t\in [0,1]$. The observations $\mathbf{x}1,\ldots,\mathbf{x}_n$ are assumed to be i.i.d. $p$-dimensional vectors with zero mean, and a covariance matrix that is a fixed-rank perturbation of the identity matrix. Treating ${ \mathbf{S}{n,t}}{t \in [0,1]}$ as a matrix-valued stochastic process indexed by $t$, we study the behavior of the largest eigenvalues of $\mathbf{S}{n,t}$, as $t$ varies, with $n$ and $p$ increasing simultaneously, so that $p/n \to y \in (0,1)$. As a key contribution of this work, we establish the weak convergence of the stochastic process corresponding to the sample spiked eigenvalues, if their population counterparts exceed the critical phase-transition threshold. Our analysis of the limiting process is fully comprehensive revealing, in general, non-Gaussian limiting processes. As an application, we consider a class of change-point problems, where the interest is in detecting structural breaks in the covariance caused by a change in magnitude of the spiked eigenvalues. For this purpose, we propose two different maximal statistics corresponding to centered spiked eigenvalues of the sequential covariances. We show the existence of limiting null distributions for these statistics, and prove consistency of the test under fixed alternatives. Moreover, we compare the behavior of the proposed tests through a simulation study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube