Elliptic Sombor energy of a graph (2404.18622v1)
Abstract: Let $G$ be a simple graph with vertex set $V(G) = {v_1, v_2,\ldots, v_n}$. The elliptic Sombor matrix of $G$, denoted by $A_{ESO}(G)$, is defined as the $n\times n$ matrix whose $(i,j)$-entry is $(d_i+d_j)\sqrt{d_i2+d_j2}$ if $v_i$ and $v_j$ are adjacent and $0$ for another cases. Let the eigenvalues of the elliptic Sombor matrix $A_{ESO}(G)$ be $\rho_1\geq \rho_2\geq \ldots\geq \rho_n$ which are the roots of the elliptic Sombor characteristic polynomial $\prod_{i=1}n (\rho-\rho_i)$. The elliptic Sombor energy ${E_{ESO}}$ of $G$ is the sum of absolute values of the eigenvalues of $A_{ESO}(G)$. In this paper, we compute the elliptic Sombor characteristic polynomial and the elliptic Sombor energy for some graph classes. We compute the elliptic Sombor energy of cubic graphs of order $10$ and as a consequence, we see that two $k$-regular graphs of the same order may have different elliptic Sombor energy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.