Optomechanically Induced Transparency on Exceptional Surfaces (2404.18526v2)
Abstract: Exceptional points (EPs) are singularities in non-Hermitian systems, where the system transmission spectrum varies significantly at the phase transition point. Here, we propose a practical scheme to study the changes of the optomechanically induced transparency (OMIT) spectrum on the exceptional surface (ES), which is formed by designing the structure of the waveguide in a non-Hermitian cavity optomechanical system. By comparing the transmission spectra of the system at different normal points, EPs on the same or different ESs, and exceptional derived points, we find that the peak-valley conversion of the system transmission spectra is obtained at the phase transition point and the arbitrary manipulation of the system transmission spectrum can be realized by moving the system on the same or different ESs. Furthermore, the phenomena of conversion and enhancement of the fast-slow light in the system transmission spectra have also been discovered in our researches. Different from the isolated EP, our proposal can discuss the system properties at different EPs, can find a richer transmission spectrum, and can provide more convenient options for experimental implementation, which paves the way for studying the nature of non-Hermitian systems in a higher dimension.
- M. Metcalfe, Applications of cavity optomechanics, Appl. Phys. Rev. 1, 031105 (2014).
- M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
- L. Midolo, A. Schliesser, and A. Fiore, Nano-opto-electro-mechanical systems, Nat. Nanotechnol 13, 11 (2018).
- J.-Q. Liao, Q.-Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89, 014302 (2014).
- D. Stefanatos, Maximising optomechanical entanglement with optimal control, Quantum Sci. Technol. 2, 014003 (2017).
- P. D. Nation, Nonclassical mechanical states in an optomechanical micromaser analog, Phys. Rev. A 88, 053828 (2013).
- X.-W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91, 053854 (2015).
- S. Huang and G. S. Agarwal, Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity, Phys. Rev. A 80, 033807 (2009).
- J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric Normal-Mode Splitting in Cavity Optomechanics, Phys. Rev. Lett. 101, 263602 (2008).
- E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid on-chip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol 7, 509 (2012).
- S. E. Harris, Electromagnetically Induced Transparency, Phys Today 50, 36 (1997).
- S. E. Harris, J. E. Field, and A. Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett. 64, 1107 (1990).
- K.-J. Boller, A. Imamoğlu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991).
- G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803 (2010).
- X.-B. Yan, Optomechanically induced transparency and gain, Phys. Rev. A 101, 043820 (2020).
- G. S. Agarwal and S. Huang, Optomechanical systems as single-photon routers, Phys. Rev. A 85, 021801 (2012).
- H. Xiong, Z.-X. Liu, and Y. Wu, Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation, Opt. Lett. 42, 3630 (2017).
- P. Wen, M. Wang, and G.-L. Long, Optomechanically induced transparency and directional amplification in a non-hermitian optomechanical lattice, Opt. Express 30, 41012 (2022).
- L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity–time symmetry, Nat. Photonics 11, 752 (2017).
- M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
- S. Longhi and L. Feng, Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited], Photon. Res. 5, B1 (2017).
- W. Heiss and A. Sannino, Avoided level crossing and exceptional points, J. Phys. A Math. Theor. 23, 1167 (1990).
- A. Magunov, I. Rotter, and S. Strakhova, Laser-induced resonance trapping in atoms, J PHYS B-AT MOL OPT 32, 1669 (1999).
- W. Heiss, Exceptional points of non-hermitian operators, J. Phys. A Math. Theor. 37, 2455 (2004).
- W. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45, 444016 (2012).
- S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546, 387 (2017).
- P. Djorwe, Y. Pennec, and B. Djafari-Rouhani, Exceptional point enhances sensitivity of optomechanical mass sensors, Phys. Rev. Appl. 12, 024002 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.