Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probing the topological phase transition in the Su-Schrieffer-Heeger model using Rydberg-atom synthetic dimensions (2404.18420v1)

Published 29 Apr 2024 in quant-ph

Abstract: We simulate the the Su-Schrieffer-Heeger (SSH) model using Rydberg-atom synthetic dimensions constructed, in a single atom, from a ladder of six neighboring $n:3S_1$ Rydberg states in which adjacent states are coupled with two-photon transitions using microwave fields. Alternating strong/weak tunneling rates, controlled by adjusting the microwave amplitudes, are varied to map out the topological phase transition as a function of the ratio of the tunneling rates. For each ratio, quench dynamics experiments, in which the system is initially prepared in one of the bulk Rydberg states and then subjected to the microwave fields, are performed to measure the population evolution of the system. From the dynamics measurements, we extract the mean chiral displacement and verify that its long-time average value converges towards the system winding number. The topological phase transition is also examined by probing the energy spectrum of the system in steady state and observing the disappearance of the zero-energy edge states. The results show that even a system with as few as six levels can demonstrate the essential characteristics of the SSH Hamiltonian.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. T. Ozawa and H. M. Price, Nat. Rev. Phys. 1, 349 (2019).
  2. K. R. A. Hazzard and B. Gadway, Physics Today 76, 62 (2023), https://pubs.aip.org/physicstoday/article-pdf/76/4/62/16779074/62_1_online.pdf .
  3. E. Meier, F. An, and B. Gadway, Nat. Comm. 7, 13986 (2016).
  4. H. M. Price, T. Ozawa, and N. Goldman, Phys. Rev. A 95, 023607 (2017).
  5. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
  6. N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019).
  7. J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
  8. J. K. Asbóth and H. Obuse, Phys. Rev. B 88, 121406 (2013).
  9. S. Stellmer, F. Schreck, and T. C. Killian, Annual Review of Cold Atoms and Molecules, Vol. 2 (World Scientific, Singapore, 2013) pp. 1–80.
  10. S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
  11. A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube