Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DF-SLAM: Dictionary Factors Representation for High-Fidelity Neural Implicit Dense Visual SLAM System (2404.17876v2)

Published 27 Apr 2024 in cs.CV

Abstract: We introduce a high-fidelity neural implicit dense visual Simultaneous Localization and Mapping (SLAM) system, termed DF-SLAM. In our work, we employ dictionary factors for scene representation, encoding the geometry and appearance information of the scene as a combination of basis and coefficient factors. Compared to neural implicit dense visual SLAM methods that directly encode scene information as features, our method exhibits superior scene detail reconstruction capabilities and more efficient memory usage, while our model size is insensitive to the size of the scene map, making our method more suitable for large-scale scenes. Additionally, we employ feature integration rendering to accelerate color rendering speed while ensuring color rendering quality, further enhancing the real-time performance of our neural SLAM method. Extensive experiments on synthetic and real-world datasets demonstrate that our method is competitive with existing state-of-the-art neural implicit SLAM methods in terms of real-time performance, localization accuracy, and scene reconstruction quality. Our source code is available at https://github.com/funcdecl/DF-SLAM.

Summary

We haven't generated a summary for this paper yet.