Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lorentzian homogeneous structures with indecomposable holonomy (2404.17470v3)

Published 26 Apr 2024 in math.DG

Abstract: For a Lorentzian homogeneous space, we study how algebraic conditions on the isotropy group affect the geometry and curvature of the homogeneous space. More specifically, we prove that a Lorentzian locally homogeneous space is locally isometric to a plane wave if it admits an Ambrose--Singer connection with indecomposable, non-irreducible holonomy. This generalises several existing results that require a certain algebraic type of the torsion of the Ambrose--Singer connection and moreover is in analogy to the fact that a Lorentzian homogeneous space with irreducible isotropy has constant sectional curvature. In addition, we prove results about Lorentzian connections with parallel torsion and for 2-symmetric connections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: