Lens Stochastic Diffraction: A Signature of Compact Structures in Gravitational-Wave Data (2404.17405v1)
Abstract: Every signal propagating through the universe is diffracted by the gravitational fields of intervening objects, aka gravitational lenses. Diffraction is most efficient when caused by compact lenses, which invariably produce additional images of a source. The signals associated with additional images are generically faint, but their collective effect may be detectable with coherent sources, such as gravitational waves (GWs), where both amplitude and phase are measured. Here, I describe lens stochastic diffraction (LSD): Poisson-distributed fluctuations after GW events caused by compact lenses. The amplitude and temporal distribution of these signals encode crucial information about the mass and abundance of compact lenses. Through the collective stochastic signal, LSD offers an order-of-magnitude improvement over single lens analysis for objects with mass $\gtrsim 103 M_\odot$. This gain can improve limits on compact dark-matter halos and allows next-generation instruments to detect supermassive black holes, given the abundance inferred from quasar luminosity studies.
- C. Y. Lam et al., An Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing, Astrophys. J. Lett. 933, L23 (2022), arXiv:2202.01903 [astro-ph.GA] .
- J. W. Nightingale et al., Abell 1201: detection of an ultramassive black hole in a strong gravitational lens, Mon. Not. Roy. Astron. Soc. 521, 3298 (2023), arXiv:2303.15514 [astro-ph.GA] .
- L. Wyrzykowski et al., Black Hole, Neutron Star and White Dwarf Candidates from Microlensing with OGLE-III, Mon. Not. Roy. Astron. Soc. 458, 3012 (2016), arXiv:1509.04899 [astro-ph.SR] .
- S. Vegetti et al., Strong gravitational lensing as a probe of dark matter, (2023), arXiv:2306.11781 [astro-ph.CO] .
- R. Massey, T. Kitching, and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73, 086901 (2010), arXiv:1001.1739 [astro-ph.CO] .
- D. Clowe, A. Gonzalez, and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604, 596 (2004), arXiv:astro-ph/0312273 .
- Y. D. Hezaveh et al., Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81, Astrophys. J. 823, 37 (2016), arXiv:1601.01388 [astro-ph.CO] .
- A. Diaz Rivero, F.-Y. Cyr-Racine, and C. Dvorkin, Power spectrum of dark matter substructure in strong gravitational lenses, Phys. Rev. D 97, 023001 (2018), arXiv:1707.04590 [astro-ph.CO] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- J. Janquart et al., Follow-up analyses to the O3 LIGO–Virgo–KAGRA lensing searches, Mon. Not. Roy. Astron. Soc. 526, 3832 (2023), arXiv:2306.03827 [gr-qc] .
- L. Dai, T. Venumadhav, and K. Sigurdson, Effect of lensing magnification on the apparent distribution of black hole mergers, Phys. Rev. D 95, 044011 (2017), arXiv:1605.09398 [astro-ph.CO] .
- M. Oguri, Effect of gravitational lensing on the distribution of gravitational waves from distant binary black hole mergers, Mon. Not. Roy. Astron. Soc. 480, 3842 (2018), arXiv:1807.02584 [astro-ph.CO] .
- R. Takahashi and T. Nakamura, Wave effects in gravitational lensing of gravitational waves from chirping binaries, Astrophys. J. 595, 1039 (2003), arXiv:astro-ph/0305055 .
- F. Xu, J. M. Ezquiaga, and D. E. Holz, Please Repeat: Strong Lensing of Gravitational Waves as a Probe of Compact Binary and Galaxy Populations, Astrophys. J. 929, 9 (2022), arXiv:2105.14390 [astro-ph.CO] .
- J. M. Diego, Constraining the abundance of primordial black holes with gravitational lensing of gravitational waves at LIGO frequencies, Phys. Rev. D 101, 123512 (2020), arXiv:1911.05736 [astro-ph.CO] .
- H. Gil Choi, C. Park, and S. Jung, Small-scale shear: peeling off diffuse subhalos with gravitational waves, (2021), arXiv:2103.08618 [astro-ph.CO] .
- P. Christian, S. Vitale, and A. Loeb, Detecting Stellar Lensing of Gravitational Waves with Ground-Based Observatories, Phys. Rev. D 98, 103022 (2018), arXiv:1802.02586 [astro-ph.HE] .
- S. Jung and C. S. Shin, Gravitational-Wave Fringes at LIGO: Detecting Compact Dark Matter by Gravitational Lensing, Phys. Rev. Lett. 122, 041103 (2019), arXiv:1712.01396 [astro-ph.CO] .
- M. Oguri and R. Takahashi, Probing Dark Low-mass Halos and Primordial Black Holes with Frequency-dependent Gravitational Lensing Dispersions of Gravitational Waves, Astrophys. J. 901, 58 (2020), arXiv:2007.01936 [astro-ph.CO] .
- M. Oguri and R. Takahashi, Amplitude and phase fluctuations of gravitational waves magnified by strong gravitational lensing, Phys. Rev. D 106, 043532 (2022), arXiv:2204.00814 [astro-ph.CO] .
- M. Fairbairn, J. Urrutia, and V. Vaskonen, Microlensing of gravitational waves by dark matter structures, (2022), arXiv:2210.13436 [astro-ph.CO] .
- J. Urrutia and V. Vaskonen, Lensing of gravitational waves as a probe of compact dark matter, Mon. Not. Roy. Astron. Soc. 509, 1358 (2021), arXiv:2109.03213 [astro-ph.CO] .
- J. Urrutia, V. Vaskonen, and H. Veermäe, Gravitational wave microlensing by dressed primordial black holes, Phys. Rev. D 108, 023507 (2023), arXiv:2303.17601 [astro-ph.CO] .
- J. Urrutia and V. Vaskonen, The dark timbre of gravitational waves, (2024), arXiv:2402.16849 [gr-qc] .
- C. Copi and G. D. Starkman, Gravitational Glint: Detectable Gravitational Wave Tails from Stars and Compact Objects, Phys. Rev. Lett. 128, 251101 (2022), arXiv:2201.03684 [gr-qc] .
- B. Kocsis, High Frequency Gravitational Waves from Supermassive Black Holes: Prospects for LIGO-Virgo Detections, Astrophys. J. 763, 122 (2013), arXiv:1211.6427 [astro-ph.HE] .
- L. Gondán and B. Kocsis, Astrophysical gravitational-wave echoes from galactic nuclei, Mon. Not. Roy. Astron. Soc. 515, 3299 (2022), arXiv:2110.09540 [astro-ph.HE] .
- M. A. Oancea, R. Stiskalek, and M. Zumalacárregui, Probing general relativistic spin-orbit coupling with gravitational waves from hierarchical triple systems, (2023), arXiv:2307.01903 [gr-qc] .
- Y. D. Hezaveh, P. J. Marshall, and R. D. Blandford, Probing the inner kpc of massive galaxies with strong gravitational lensing, Astrophys. J. Lett. 799, L22 (2015), arXiv:1501.01757 [astro-ph.GA] .
- S. Savastano, F. Vernizzi, and M. Zumalacárregui, Through the lens of Sgr A∗: identifying strongly lensed Continuous Gravitational Waves beyond the Einstein radius, (2022), arXiv:2212.14697 [gr-qc] .
- T. Regimbau, The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors, Symmetry 14, 270 (2022).
- C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
- N. Christensen, Stochastic Gravitational Wave Backgrounds, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
- N. van Remortel, K. Janssens, and K. Turbang, Stochastic gravitational wave background: Methods and implications, Prog. Part. Nucl. Phys. 128, 104003 (2023), arXiv:2210.00761 [gr-qc] .
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- H. J. Witt, Investigation of high amplification events in light curves of gravitationally lensed quasars., ”Astron. Astrophys.” 236, 311 (1990).
- P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (1992).
- N. Katz, S. Balbus, and B. Paczynski, Random Scattering Approach to Gravitational Microlensing, Astrophys. J. 306, 2 (1986).
- T. Venumadhav, L. Dai, and J. Miralda-Escudé, Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters, Astrophys. J. 850, 49 (2017), arXiv:1707.00003 [astro-ph.CO] .
- M. Pascale and L. Dai, New Approximation of Magnification Statistics for Random Microlensing of Magnified Sources, (2021), arXiv:2104.12009 [astro-ph.GA] .
- L. Dai and T. Venumadhav, On the waveforms of gravitationally lensed gravitational waves, (2017), arXiv:1702.04724 [gr-qc] .
- L. Lindblom, B. J. Owen, and D. A. Brown, Model Waveform Accuracy Standards for Gravitational Wave Data Analysis, Phys. Rev. D 78, 124020 (2008), arXiv:0809.3844 [gr-qc] .
- M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
- C. Talbot and E. Thrane, Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization, Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
- P. Madau and M. Dickinson, Cosmic Star Formation History, Ann. Rev. Astron. Astrophys. 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
- P. Mroz et al., No massive black holes in the Milky Way halo, (2024), arXiv:2403.02386 [astro-ph.GA] .
- T. Blaineau et al., New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product\odot⊙ <<< M <<< 1000 M⊙direct-product\odot⊙, Astron. Astrophys. 664, A106 (2022), arXiv:2202.13819 [astro-ph.GA] .
- M. Zumalacarregui and U. Seljak, Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 121, 141101 (2018), arXiv:1712.02240 [astro-ph.CO] .
- V. Kalogera et al., The Next Generation Global Gravitational Wave Observatory: The Science Book, (2021), arXiv:2111.06990 [gr-qc] .
- D. Croon and S. Sevillano Muñoz, Cosmic microwave background constraints on extended dark matter objects, (2024), arXiv:2403.13072 [astro-ph.CO] .
- P. F. Hopkins, G. T. Richards, and L. Hernquist, An Observational Determination of the Bolometric Quasar Luminosity Function, Astrophys. J. 654, 731 (2007), arXiv:astro-ph/0605678 .
- A. Soltan, Masses of quasars, Mon. Not. Roy. Astron. Soc. 200, 115 (1982).
- J. Paynter, R. Webster, and E. Thrane, Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst, Nature Astron. 5, 560 (2021), arXiv:2103.15414 [astro-ph.HE] .
- D. Croon, D. McKeen, and N. Raj, Gravitational microlensing by dark matter in extended structures, Phys. Rev. D 101, 083013 (2020), arXiv:2002.08962 [astro-ph.CO] .
- P. W. Graham and H. Ramani, Constraints on Dark Matter from Dynamical Heating of Stars in Ultrafaint Dwarfs. Part 2: Substructure and the Primordial Power Spectrum, (2024), arXiv:2404.01378 [hep-ph] .
- P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM] .
- P. Auclair et al. (LISA Cosmology Working Group), Cosmology with the Laser Interferometer Space Antenna, (2022), arXiv:2204.05434 [astro-ph.CO] .
- G. F. Lewis, Gravitational Microlensing Time Delays at High Optical Depth: Image Parities and the Temporal Properties of Fast Radio Bursts, Mon. Not. Roy. Astron. Soc. 497, 1583 (2020), arXiv:2007.03919 [astro-ph.CO] .
- L. L. R. Williams and R. A. M. J. Wijers, Distortion of gamma-ray burst light curves by gravitational microlensing, Mon. Not. Roy. Astron. Soc. 286, L11 (1997), arXiv:astro-ph/9701246 [astro-ph] .
- A. K. Meena, Gravitational Lensing of Gravitational Waves: Probing Intermediate Mass Black Holes in Galaxy Lenses with Global Minima, (2023), arXiv:2305.02880 [astro-ph.CO] .
- B. J. Kavanagh, bradkav/PBHbounds: Release version, Zenodo (2019).
- T. P. Robitaille et al. (Astropy), Astropy: A Community Python Package for Astronomy, Astron. Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM] .
- A. M. Price-Whelan et al. (Astropy), The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, Astron. J. 156, 123 (2018), arXiv:1801.02634 .
- A. M. Price-Whelan et al. (Astropy), The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package*, Astrophys. J. 935, 167 (2022), arXiv:2206.14220 [astro-ph.IM] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.