Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Lens Stochastic Diffraction: A Signature of Compact Structures in Gravitational-Wave Data (2404.17405v1)

Published 26 Apr 2024 in gr-qc, astro-ph.CO, astro-ph.HE, and hep-ph

Abstract: Every signal propagating through the universe is diffracted by the gravitational fields of intervening objects, aka gravitational lenses. Diffraction is most efficient when caused by compact lenses, which invariably produce additional images of a source. The signals associated with additional images are generically faint, but their collective effect may be detectable with coherent sources, such as gravitational waves (GWs), where both amplitude and phase are measured. Here, I describe lens stochastic diffraction (LSD): Poisson-distributed fluctuations after GW events caused by compact lenses. The amplitude and temporal distribution of these signals encode crucial information about the mass and abundance of compact lenses. Through the collective stochastic signal, LSD offers an order-of-magnitude improvement over single lens analysis for objects with mass $\gtrsim 103 M_\odot$. This gain can improve limits on compact dark-matter halos and allows next-generation instruments to detect supermassive black holes, given the abundance inferred from quasar luminosity studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. C. Y. Lam et al., An Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing, Astrophys. J. Lett. 933, L23 (2022), arXiv:2202.01903 [astro-ph.GA] .
  2. J. W. Nightingale et al., Abell 1201: detection of an ultramassive black hole in a strong gravitational lens, Mon. Not. Roy. Astron. Soc. 521, 3298 (2023), arXiv:2303.15514 [astro-ph.GA] .
  3. L. Wyrzykowski et al., Black Hole, Neutron Star and White Dwarf Candidates from Microlensing with OGLE-III, Mon. Not. Roy. Astron. Soc. 458, 3012 (2016), arXiv:1509.04899 [astro-ph.SR] .
  4. S. Vegetti et al., Strong gravitational lensing as a probe of dark matter,  (2023), arXiv:2306.11781 [astro-ph.CO] .
  5. R. Massey, T. Kitching, and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73, 086901 (2010), arXiv:1001.1739 [astro-ph.CO] .
  6. D. Clowe, A. Gonzalez, and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604, 596 (2004), arXiv:astro-ph/0312273 .
  7. Y. D. Hezaveh et al., Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81, Astrophys. J. 823, 37 (2016), arXiv:1601.01388 [astro-ph.CO] .
  8. A. Diaz Rivero, F.-Y. Cyr-Racine, and C. Dvorkin, Power spectrum of dark matter substructure in strong gravitational lenses, Phys. Rev. D 97, 023001 (2018), arXiv:1707.04590 [astro-ph.CO] .
  9. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  10. B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  11. J. Janquart et al., Follow-up analyses to the O3 LIGO–Virgo–KAGRA lensing searches, Mon. Not. Roy. Astron. Soc. 526, 3832 (2023), arXiv:2306.03827 [gr-qc] .
  12. L. Dai, T. Venumadhav, and K. Sigurdson, Effect of lensing magnification on the apparent distribution of black hole mergers, Phys. Rev. D 95, 044011 (2017), arXiv:1605.09398 [astro-ph.CO] .
  13. M. Oguri, Effect of gravitational lensing on the distribution of gravitational waves from distant binary black hole mergers, Mon. Not. Roy. Astron. Soc. 480, 3842 (2018), arXiv:1807.02584 [astro-ph.CO] .
  14. R. Takahashi and T. Nakamura, Wave effects in gravitational lensing of gravitational waves from chirping binaries, Astrophys. J. 595, 1039 (2003), arXiv:astro-ph/0305055 .
  15. F. Xu, J. M. Ezquiaga, and D. E. Holz, Please Repeat: Strong Lensing of Gravitational Waves as a Probe of Compact Binary and Galaxy Populations, Astrophys. J. 929, 9 (2022), arXiv:2105.14390 [astro-ph.CO] .
  16. J. M. Diego, Constraining the abundance of primordial black holes with gravitational lensing of gravitational waves at LIGO frequencies, Phys. Rev. D 101, 123512 (2020), arXiv:1911.05736 [astro-ph.CO] .
  17. H. Gil Choi, C. Park, and S. Jung, Small-scale shear: peeling off diffuse subhalos with gravitational waves,   (2021), arXiv:2103.08618 [astro-ph.CO] .
  18. P. Christian, S. Vitale, and A. Loeb, Detecting Stellar Lensing of Gravitational Waves with Ground-Based Observatories, Phys. Rev. D 98, 103022 (2018), arXiv:1802.02586 [astro-ph.HE] .
  19. S. Jung and C. S. Shin, Gravitational-Wave Fringes at LIGO: Detecting Compact Dark Matter by Gravitational Lensing, Phys. Rev. Lett. 122, 041103 (2019), arXiv:1712.01396 [astro-ph.CO] .
  20. M. Oguri and R. Takahashi, Probing Dark Low-mass Halos and Primordial Black Holes with Frequency-dependent Gravitational Lensing Dispersions of Gravitational Waves, Astrophys. J. 901, 58 (2020), arXiv:2007.01936 [astro-ph.CO] .
  21. M. Oguri and R. Takahashi, Amplitude and phase fluctuations of gravitational waves magnified by strong gravitational lensing, Phys. Rev. D 106, 043532 (2022), arXiv:2204.00814 [astro-ph.CO] .
  22. M. Fairbairn, J. Urrutia, and V. Vaskonen, Microlensing of gravitational waves by dark matter structures,   (2022), arXiv:2210.13436 [astro-ph.CO] .
  23. J. Urrutia and V. Vaskonen, Lensing of gravitational waves as a probe of compact dark matter, Mon. Not. Roy. Astron. Soc. 509, 1358 (2021), arXiv:2109.03213 [astro-ph.CO] .
  24. J. Urrutia, V. Vaskonen, and H. Veermäe, Gravitational wave microlensing by dressed primordial black holes, Phys. Rev. D 108, 023507 (2023), arXiv:2303.17601 [astro-ph.CO] .
  25. J. Urrutia and V. Vaskonen, The dark timbre of gravitational waves,   (2024), arXiv:2402.16849 [gr-qc] .
  26. C. Copi and G. D. Starkman, Gravitational Glint: Detectable Gravitational Wave Tails from Stars and Compact Objects, Phys. Rev. Lett. 128, 251101 (2022), arXiv:2201.03684 [gr-qc] .
  27. B. Kocsis, High Frequency Gravitational Waves from Supermassive Black Holes: Prospects for LIGO-Virgo Detections, Astrophys. J. 763, 122 (2013), arXiv:1211.6427 [astro-ph.HE] .
  28. L. Gondán and B. Kocsis, Astrophysical gravitational-wave echoes from galactic nuclei, Mon. Not. Roy. Astron. Soc. 515, 3299 (2022), arXiv:2110.09540 [astro-ph.HE] .
  29. M. A. Oancea, R. Stiskalek, and M. Zumalacárregui, Probing general relativistic spin-orbit coupling with gravitational waves from hierarchical triple systems,   (2023), arXiv:2307.01903 [gr-qc] .
  30. Y. D. Hezaveh, P. J. Marshall, and R. D. Blandford, Probing the inner kpc of massive galaxies with strong gravitational lensing, Astrophys. J. Lett. 799, L22 (2015), arXiv:1501.01757 [astro-ph.GA] .
  31. S. Savastano, F. Vernizzi, and M. Zumalacárregui, Through the lens of Sgr A∗: identifying strongly lensed Continuous Gravitational Waves beyond the Einstein radius,   (2022), arXiv:2212.14697 [gr-qc] .
  32. T. Regimbau, The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors, Symmetry 14, 270 (2022).
  33. C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  34. N. Christensen, Stochastic Gravitational Wave Backgrounds, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
  35. N. van Remortel, K. Janssens, and K. Turbang, Stochastic gravitational wave background: Methods and implications, Prog. Part. Nucl. Phys. 128, 104003 (2023), arXiv:2210.00761 [gr-qc] .
  36. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  37. H. J. Witt, Investigation of high amplification events in light curves of gravitationally lensed quasars., ”Astron. Astrophys.” 236, 311 (1990).
  38. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (1992).
  39. N. Katz, S. Balbus, and B. Paczynski, Random Scattering Approach to Gravitational Microlensing, Astrophys. J. 306, 2 (1986).
  40. T. Venumadhav, L. Dai, and J. Miralda-Escudé, Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters, Astrophys. J. 850, 49 (2017), arXiv:1707.00003 [astro-ph.CO] .
  41. M. Pascale and L. Dai, New Approximation of Magnification Statistics for Random Microlensing of Magnified Sources,  (2021), arXiv:2104.12009 [astro-ph.GA] .
  42. L. Dai and T. Venumadhav, On the waveforms of gravitationally lensed gravitational waves,   (2017), arXiv:1702.04724 [gr-qc] .
  43. L. Lindblom, B. J. Owen, and D. A. Brown, Model Waveform Accuracy Standards for Gravitational Wave Data Analysis, Phys. Rev. D 78, 124020 (2008), arXiv:0809.3844 [gr-qc] .
  44. M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
  45. C. Talbot and E. Thrane, Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization, Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
  46. P. Madau and M. Dickinson, Cosmic Star Formation History, Ann. Rev. Astron. Astrophys. 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
  47. P. Mroz et al., No massive black holes in the Milky Way halo,   (2024), arXiv:2403.02386 [astro-ph.GA] .
  48. T. Blaineau et al., New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product\odot⊙ <<< M <<< 1000 M⊙direct-product\odot⊙, Astron. Astrophys. 664, A106 (2022), arXiv:2202.13819 [astro-ph.GA] .
  49. M. Zumalacarregui and U. Seljak, Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 121, 141101 (2018), arXiv:1712.02240 [astro-ph.CO] .
  50. V. Kalogera et al., The Next Generation Global Gravitational Wave Observatory: The Science Book,   (2021), arXiv:2111.06990 [gr-qc] .
  51. D. Croon and S. Sevillano Muñoz, Cosmic microwave background constraints on extended dark matter objects,  (2024), arXiv:2403.13072 [astro-ph.CO] .
  52. P. F. Hopkins, G. T. Richards, and L. Hernquist, An Observational Determination of the Bolometric Quasar Luminosity Function, Astrophys. J. 654, 731 (2007), arXiv:astro-ph/0605678 .
  53. A. Soltan, Masses of quasars, Mon. Not. Roy. Astron. Soc. 200, 115 (1982).
  54. J. Paynter, R. Webster, and E. Thrane, Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst, Nature Astron. 5, 560 (2021), arXiv:2103.15414 [astro-ph.HE] .
  55. D. Croon, D. McKeen, and N. Raj, Gravitational microlensing by dark matter in extended structures, Phys. Rev. D 101, 083013 (2020), arXiv:2002.08962 [astro-ph.CO] .
  56. P. W. Graham and H. Ramani, Constraints on Dark Matter from Dynamical Heating of Stars in Ultrafaint Dwarfs. Part 2: Substructure and the Primordial Power Spectrum,  (2024), arXiv:2404.01378 [hep-ph] .
  57. P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna,   (2017), arXiv:1702.00786 [astro-ph.IM] .
  58. P. Auclair et al. (LISA Cosmology Working Group), Cosmology with the Laser Interferometer Space Antenna,   (2022), arXiv:2204.05434 [astro-ph.CO] .
  59. G. F. Lewis, Gravitational Microlensing Time Delays at High Optical Depth: Image Parities and the Temporal Properties of Fast Radio Bursts, Mon. Not. Roy. Astron. Soc. 497, 1583 (2020), arXiv:2007.03919 [astro-ph.CO] .
  60. L. L. R. Williams and R. A. M. J. Wijers, Distortion of gamma-ray burst light curves by gravitational microlensing, Mon. Not. Roy. Astron. Soc. 286, L11 (1997), arXiv:astro-ph/9701246 [astro-ph] .
  61. A. K. Meena, Gravitational Lensing of Gravitational Waves: Probing Intermediate Mass Black Holes in Galaxy Lenses with Global Minima,   (2023), arXiv:2305.02880 [astro-ph.CO] .
  62. B. J. Kavanagh, bradkav/PBHbounds: Release version, Zenodo (2019).
  63. T. P. Robitaille et al. (Astropy), Astropy: A Community Python Package for Astronomy, Astron. Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM] .
  64. A. M. Price-Whelan et al. (Astropy), The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, Astron. J. 156, 123 (2018), arXiv:1801.02634 .
  65. A. M. Price-Whelan et al. (Astropy), The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package*, Astrophys. J. 935, 167 (2022), arXiv:2206.14220 [astro-ph.IM] .
Citations (1)

Summary

  • The paper introduces Lens Stochastic Diffraction (LSD) as a novel signature of gravitational interference following GW events, allowing for the detection of compact gravitational lenses.
  • LSD analyzes the collective impact of faint gravitational wave signals appearing with primary events, providing a sensitive method to probe mass distribution of compact objects.
  • This approach enhances sensitivity to compact objects over 10^3 M{00e2}{0097}{008a}, offering improved constraints on the abundance of compact dark-matter halos and massive black holes.

Lens Stochastic Diffraction: A Novel Approach to Gravitational Wave Lensing Analysis

The paper presented by Miguel Zumalac explores a sophisticated concept within the field of gravitational wave (GW) astronomy, focusing on "Lens Stochastic Diffraction" (LSD). This investigation is deeply entrenched in the intersection of gravitational wave interference and lensing phenomena, providing a distinct methodological approach to examining the mass distribution of compact objects through gravitational-wave data.

Conceptual Overview

Gravitational lensing, a phenomenon where light or gravitational waves are deflected by the gravitational field of an intervening object, is a critical tool for probing the mass and distribution of otherwise invisible massive structures like black holes and dark matter halos. Historically, much of this exploration has been conducted using electromagnetic sources. However, the advent and growing sophistication of GW detectors such as LIGO and Virgo open new vistas for lensing applications in GW astronomy.

Zumalac introduces LSD as an innovative signature of gravitational interference characterized by Poisson-distributed fluctuations that arise following GW events, particularly when these waves encounter compact gravitational lenses. This approach significantly extends the applicability of gravitational lensing techniques, offering a more sensitive probe for compact objects with masses exceeding approximately 103M10^3 M_\odot. The result is an enhancement in the detection capability and the potential to place stringent constraints on the abundance of compact dark-matter halos, as well as supermassive black holes inferred from quasar studies.

Methodological Insights

Central to this approach is the coherent analysis of faint gravitational wave signals that appear in tandem with primary GW events. LSD considers the collective impact of these faint signals, which, while individually challenging to detect due to their low amplitude, collectively contribute to a measurable stochastic signature in gravitational wave data. This signature is sensitive to the mass and distribution of compact lenses in the universe.

The paper explores the mathematical formulation underpinning LSD, characterizing the time distribution and signal-to-noise ratio (SNR) of the secondary images. Through this lens, Zumalac highlights the spectral properties of the LSD signature and its interplay with the primary GW signals, specifying how these relationships encode detailed information about the intervening mass distribution and its cosmic evolution.

Implications and Future Directions

The practical implications of Zumalac's findings are profound. By enhancing our sensitivity to larger masses, LSD offers an order-of-magnitude improvement over traditional single-lens analyses. This improvement is crucial in refining our understanding of the universe's mass composition, including probing the distribution of compact dark matter structures and potentially identifying additional populations of massive black holes.

Theoretically, these advancements beckon further exploration into the detailed physics of gravitational lenses and the stochastic processes governing gravitational interference. Future developments in GW detection, particularly with upcoming detectors like the Einstein Telescope (ET) and Cosmic Explorer (CE), could capitalize on LSD to further our knowledge of cosmic structure, contributing robustly to the fields of cosmology, astrophysics, and fundamental physics.

In synthesis, Zumalac's paper not only advances the technical methodology for analyzing GW data but also establishes a compelling framework for future research to explore the profound questions about the universe's mass content and the dynamics of lensing phenomena. The Lens Stochastic Diffraction methodology is positioned to significantly impact the field, refining our understanding of existing data and profoundly influencing future gravitational wave research.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 87 likes.

Upgrade to Pro to view all of the tweets about this paper: