On sequences of convex records in the plane (2404.17309v1)
Abstract: Convex records have an appealing purely geometric definition. In a sequence of $d$-dimensional data points, the $n$-th point is a convex record if it lies outside the convex hull of all preceding points. We specifically focus on the bivariate (i.e., two-dimensional) setting. For iid (independent and identically distributed) points, we establish an identity relating the mean number $\mean{R_n}$ of convex records up to time $n$ to the mean number $\mean{N_n}$ of vertices in the convex hull of the first $n$ points. By combining this identity with extensive numerical simulations, we provide a comprehensive overview of the statistics of convex records for various examples of iid data points in the plane: uniform points in the square and in the disk, Gaussian points and points with an isotropic power-law distribution. In all these cases, the mean values and variances of $N_n$ and $R_n$ grow proportionally to each other, resulting in finite limit Fano factors $F_N$ and $F_R$. We also consider planar random walks, i.e., sequences of points with iid increments. For both the Pearson walk in the continuum and the P\'olya walk on a lattice, we characterise the growth of the mean number $\mean{R_n}$ of convex records and demonstrate that the ratio $R_n/\mean{R_n}$ keeps fluctuating with a universal limit distribution.
- Record statistics of a strongly correlated time series: random walks and Lévy flights. J. Phys. A: Math. Theor., 50:333001, 2017.
- K. N. Chandler. The distribution and frequency of record values. J. R. Statist. Soc. B., 14:220–228, 1952.
- A. Rényi. Théorie des éléments saillants d’une suite d’observations. Ann. Sci. Univ. Clermont-Ferrand, 8:7–13, 1962.
- A. Rényi. Théorie des éléments saillants d’une suite d’observations. In Colloquium on Combinatorial Methods in Probability Theory, pages 104–117. Mathematical Institute of Aarhus University, Aarhus, Denmark, 1962.
- N. Glick. Breaking records and breaking boards. Amer. Math. Monthly, 85:2–26, 1978.
- Records. Wiley, New York, 1998.
- V. B. Nevzorov and N. Balakrishnan. A record of records. Handbook of Statistics, 16:515–570, 1998.
- V. B. Nevzorov. Records: Mathematical Theory (Translation of Mathematical Monographs vol 194). American Mathematical Society, Providence, RI, 2001.
- J. Bunge and C. M. Goldie. Record sequences and their applications. Handbook of Statistics, 19:277–308, 2001.
- W. Feller. An Introduction to Probability Theory and its Applications, volume 2. Wiley, New York, 2nd edition, 1971.
- M. G. Kendall. Discrimination and classification, multivariate analysis. In P. R. Krishnaiah, editor, Multivariate Analysis, pages 165–184, New York, 1966. Academic.
- V. Barnett. The ordering of multivariate data. J. R. Statist. Soc. A, 139:318–355, 1976.
- Records in a partially ordered set. Ann. Prob., 17:678–699, 1989.
- Many multivariate records. Stoch. Proc. Appl., 59:185–216, 1995.
- A. V. Gnedin. Records from a multivariate normal sample. Stat. Prob. Lett., 39:11–15, 1998.
- Multivariate records based on dominance. Electron. J. Prob., 15:1863–1892, 2010.
- C. Dombry and M. Zott. Multivariate records and hitting scenarios. Extremes, 21:343–361, 2018.
- North-east bivariate records. Metrika, 83:961–976, 2020.
- S. Tat and M. R. Faridrohani. A new type of multivariate records: depth-based records. Statistics, 55:296–320, 2021.
- M. Kaluszka. Estimates of some probabilities in multidimensional convex records. Applicationes Math., 23:1–11, 1995.
- Geometrical probability. In M. G. Kendall, editor, Griffin’s Statistical Monographs and Courses, volume 10. Hafner, New York, 1963.
- R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, Berlin, 2008.
- Random convex hulls and extreme value statistics. J. Stat. Phys., 138:955–1009, 2010.
- J. J. Sylvester. Problem 1491. The Educational Times, April 1864.
- R. E. Pfeifer. The historical development of J. J. Sylvester’s four point problem. Math. Mag., 62:309–317, 1989.
- A. Rényi and R. Sulanke. Über die konvexe Hülle von n𝑛nitalic_n zufällig gewählten Punkten. Z. Wahr., 2:75–84, 1963.
- B. Efron. The convex hull of a random set of points. Biometrika, 52:331–343, 1965.
- P. Groeneboom. Limit theorems for convex hulls. Probab. Th. Rel. Fields, 79:327–368, 1988.
- U. Fano. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev., 72:26–29, 1947.
- Sub-Poissonian shot noise in graphene. Phys. Rev. Lett., 96:246802, 2006.
- L. Mandel. Sub-Poissonian photon statistics in resonance fluorescence. Optics Lett., 4:205–207, 1979.
- C. Buchta. The exact distribution of the number of vertices of a random convex chain. Mathematika, 53:247–254, 2006.
- C. Buchta. On the number of vertices of the convex hull of random points in a square and a triangle. Anzeiger Abt. II, 143:3–10, 2009.
- J. F. Marckert. The probability that n𝑛nitalic_n random points in a disk are in convex position. Braz. J. Prob. Stat., 31:320–337, 2017.
- S. Finch and I. Hueter. Random convex hulls: a variance revisited. Adv. Appl. Prob., 36:981–986, 2004.
- H. Carnal. Die konvexe Hülle von n𝑛nitalic_n rotationssymmetrisch verteilten Punkten. Z. Wahr., 15:168–176, 1970.
- I. Hueter. The convex hull of a normal sample. Adv. Appl. Prob., 26:855–875, 1994.
- I. Hueter. Limit theorems for the convex hull of random points in higher dimensions. Trans. Amer. Math. Soc., 351:4337–4363, 1999.
- On multidimensional record patterns. J. Stat. Mech., 2020:063205, 2020.
- The number of extreme points in the convex hull of a random sample. J. Appl. Prob., 28:287–304, 1991.
- B. Massé. On the LLN fo the number of vertices of a random convex hull. Adv. Appl. Prob., 32:675–681, 2000.
- W. J. Reed. Random points in a simplex. Pacific J. Math., 54:183–198, 1974.
- V. S. Alagar. On the distribution of a random triangle. J. Appl. Prob., 14:284–297, 1977.
- P. Valtr. Probability that n𝑛nitalic_n random points are in convex position. Discrete Comp. Geom., 13:637–643, 1995.
- P. Valtr. The probability that n𝑛nitalic_n random points in a triangle are in convex position. Combinatorica, 16:567–573, 1996.
- Sylvester’s question and the random acceleration process. J. Stat. Mech., 2008:P10010, 2008.
- K. Pearson. The problem of the random walk. Nature, 72:294, 1905.
- G. Pólya. Wahrscheinlichkeitstheoretisches über die Irrfahrt. Mitt. der Phys. Ges. Zürich, 19:75–86, 1919.
- F. Spitzer and H. Widom. The circumference of a convex polygon. Proc. Amer. Math. Soc., 12:506–509, 1961.
- G. Baxter. A combinatorial lemma for complex numbers. Ann. Math. Statist., 32:901–904, 1961.
- L. Takacs. Expected perimeter length. Amer. Math. Monthly, 87:142, 1980.
- J. M. Steele. The Bohnenblust-Spitzer algorithm and its applications. J. Comp. Appl. Math., 142:235–249, 2002.
- Convex hulls of random walks: Expected number of faces and face probabilities. Adv. Math., 320:595–629, 2017.
- C. Godrèche and J. M. Luck. On sequences of records generated by planar random walks. J. Phys. A: Math. Theor., 54:325003, 2021.
- J. McRedmond and A. R. Wade. The convex hull of a planar random walk: perimeter, diameter, and shape. Electron. J. Prob., 23:1–24, 2018.
- A. N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae. Birkhäuser, Basel, 1996.
- I. Bárány and C. Buchta. Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann., 297:467–497, 1993.
- H. Raynaud. Sur l’enveloppe convexe des nuages de points aléatoires dans ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Appl. Prob., 7:35–48, 1970.
- M. Reitzner. Random polytopes and the Efron-Stein jackknife inequality. Ann. Prob., 31:2136–2166, 2003.
- Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1989.
- P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.