Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On sequences of convex records in the plane (2404.17309v1)

Published 26 Apr 2024 in cond-mat.stat-mech and math.PR

Abstract: Convex records have an appealing purely geometric definition. In a sequence of $d$-dimensional data points, the $n$-th point is a convex record if it lies outside the convex hull of all preceding points. We specifically focus on the bivariate (i.e., two-dimensional) setting. For iid (independent and identically distributed) points, we establish an identity relating the mean number $\mean{R_n}$ of convex records up to time $n$ to the mean number $\mean{N_n}$ of vertices in the convex hull of the first $n$ points. By combining this identity with extensive numerical simulations, we provide a comprehensive overview of the statistics of convex records for various examples of iid data points in the plane: uniform points in the square and in the disk, Gaussian points and points with an isotropic power-law distribution. In all these cases, the mean values and variances of $N_n$ and $R_n$ grow proportionally to each other, resulting in finite limit Fano factors $F_N$ and $F_R$. We also consider planar random walks, i.e., sequences of points with iid increments. For both the Pearson walk in the continuum and the P\'olya walk on a lattice, we characterise the growth of the mean number $\mean{R_n}$ of convex records and demonstrate that the ratio $R_n/\mean{R_n}$ keeps fluctuating with a universal limit distribution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Record statistics of a strongly correlated time series: random walks and Lévy flights. J. Phys. A: Math. Theor., 50:333001, 2017.
  2. K. N. Chandler. The distribution and frequency of record values. J. R. Statist. Soc. B., 14:220–228, 1952.
  3. A. Rényi. Théorie des éléments saillants d’une suite d’observations. Ann. Sci. Univ. Clermont-Ferrand, 8:7–13, 1962.
  4. A. Rényi. Théorie des éléments saillants d’une suite d’observations. In Colloquium on Combinatorial Methods in Probability Theory, pages 104–117. Mathematical Institute of Aarhus University, Aarhus, Denmark, 1962.
  5. N. Glick. Breaking records and breaking boards. Amer. Math. Monthly, 85:2–26, 1978.
  6. Records. Wiley, New York, 1998.
  7. V. B. Nevzorov and N. Balakrishnan. A record of records. Handbook of Statistics, 16:515–570, 1998.
  8. V. B. Nevzorov. Records: Mathematical Theory (Translation of Mathematical Monographs vol 194). American Mathematical Society, Providence, RI, 2001.
  9. J. Bunge and C. M. Goldie. Record sequences and their applications. Handbook of Statistics, 19:277–308, 2001.
  10. W. Feller. An Introduction to Probability Theory and its Applications, volume 2. Wiley, New York, 2nd edition, 1971.
  11. M. G. Kendall. Discrimination and classification, multivariate analysis. In P. R. Krishnaiah, editor, Multivariate Analysis, pages 165–184, New York, 1966. Academic.
  12. V. Barnett. The ordering of multivariate data. J. R. Statist. Soc. A, 139:318–355, 1976.
  13. Records in a partially ordered set. Ann. Prob., 17:678–699, 1989.
  14. Many multivariate records. Stoch. Proc. Appl., 59:185–216, 1995.
  15. A. V. Gnedin. Records from a multivariate normal sample. Stat. Prob. Lett., 39:11–15, 1998.
  16. Multivariate records based on dominance. Electron. J. Prob., 15:1863–1892, 2010.
  17. C. Dombry and M. Zott. Multivariate records and hitting scenarios. Extremes, 21:343–361, 2018.
  18. North-east bivariate records. Metrika, 83:961–976, 2020.
  19. S. Tat and M. R. Faridrohani. A new type of multivariate records: depth-based records. Statistics, 55:296–320, 2021.
  20. M. Kaluszka. Estimates of some probabilities in multidimensional convex records. Applicationes Math., 23:1–11, 1995.
  21. Geometrical probability. In M. G. Kendall, editor, Griffin’s Statistical Monographs and Courses, volume 10. Hafner, New York, 1963.
  22. R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, Berlin, 2008.
  23. Random convex hulls and extreme value statistics. J. Stat. Phys., 138:955–1009, 2010.
  24. J. J. Sylvester. Problem 1491. The Educational Times, April 1864.
  25. R. E. Pfeifer. The historical development of J. J. Sylvester’s four point problem. Math. Mag., 62:309–317, 1989.
  26. A. Rényi and R. Sulanke. Über die konvexe Hülle von n𝑛nitalic_n zufällig gewählten Punkten. Z. Wahr., 2:75–84, 1963.
  27. B. Efron. The convex hull of a random set of points. Biometrika, 52:331–343, 1965.
  28. P. Groeneboom. Limit theorems for convex hulls. Probab. Th. Rel. Fields, 79:327–368, 1988.
  29. U. Fano. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev., 72:26–29, 1947.
  30. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett., 96:246802, 2006.
  31. L. Mandel. Sub-Poissonian photon statistics in resonance fluorescence. Optics Lett., 4:205–207, 1979.
  32. C. Buchta. The exact distribution of the number of vertices of a random convex chain. Mathematika, 53:247–254, 2006.
  33. C. Buchta. On the number of vertices of the convex hull of random points in a square and a triangle. Anzeiger Abt. II, 143:3–10, 2009.
  34. J. F. Marckert. The probability that n𝑛nitalic_n random points in a disk are in convex position. Braz. J. Prob. Stat., 31:320–337, 2017.
  35. S. Finch and I. Hueter. Random convex hulls: a variance revisited. Adv. Appl. Prob., 36:981–986, 2004.
  36. H. Carnal. Die konvexe Hülle von n𝑛nitalic_n rotationssymmetrisch verteilten Punkten. Z. Wahr., 15:168–176, 1970.
  37. I. Hueter. The convex hull of a normal sample. Adv. Appl. Prob., 26:855–875, 1994.
  38. I. Hueter. Limit theorems for the convex hull of random points in higher dimensions. Trans. Amer. Math. Soc., 351:4337–4363, 1999.
  39. On multidimensional record patterns. J. Stat. Mech., 2020:063205, 2020.
  40. The number of extreme points in the convex hull of a random sample. J. Appl. Prob., 28:287–304, 1991.
  41. B. Massé. On the LLN fo the number of vertices of a random convex hull. Adv. Appl. Prob., 32:675–681, 2000.
  42. W. J. Reed. Random points in a simplex. Pacific J. Math., 54:183–198, 1974.
  43. V. S. Alagar. On the distribution of a random triangle. J. Appl. Prob., 14:284–297, 1977.
  44. P. Valtr. Probability that n𝑛nitalic_n random points are in convex position. Discrete Comp. Geom., 13:637–643, 1995.
  45. P. Valtr. The probability that n𝑛nitalic_n random points in a triangle are in convex position. Combinatorica, 16:567–573, 1996.
  46. Sylvester’s question and the random acceleration process. J. Stat. Mech., 2008:P10010, 2008.
  47. K. Pearson. The problem of the random walk. Nature, 72:294, 1905.
  48. G. Pólya. Wahrscheinlichkeitstheoretisches über die Irrfahrt. Mitt. der Phys. Ges. Zürich, 19:75–86, 1919.
  49. F. Spitzer and H. Widom. The circumference of a convex polygon. Proc. Amer. Math. Soc., 12:506–509, 1961.
  50. G. Baxter. A combinatorial lemma for complex numbers. Ann. Math. Statist., 32:901–904, 1961.
  51. L. Takacs. Expected perimeter length. Amer. Math. Monthly, 87:142, 1980.
  52. J. M. Steele. The Bohnenblust-Spitzer algorithm and its applications. J. Comp. Appl. Math., 142:235–249, 2002.
  53. Convex hulls of random walks: Expected number of faces and face probabilities. Adv. Math., 320:595–629, 2017.
  54. C. Godrèche and J. M. Luck. On sequences of records generated by planar random walks. J. Phys. A: Math. Theor., 54:325003, 2021.
  55. J. McRedmond and A. R. Wade. The convex hull of a planar random walk: perimeter, diameter, and shape. Electron. J. Prob., 23:1–24, 2018.
  56. A. N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae. Birkhäuser, Basel, 1996.
  57. I. Bárány and C. Buchta. Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann., 297:467–497, 1993.
  58. H. Raynaud. Sur l’enveloppe convexe des nuages de points aléatoires dans ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Appl. Prob., 7:35–48, 1970.
  59. M. Reitzner. Random polytopes and the Efron-Stein jackknife inequality. Ann. Prob., 31:2136–2166, 2003.
  60. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1989.
  61. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.