Partial absence of cosine problem in 3d Lorentzian spin foams (2404.16943v1)
Abstract: We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.
- L. Freidel and K. Krasnov, Class. Quant. Grav. 25, 125018 (2008), arXiv:0708.1595 .
- E. R. Livine and S. Speziale, Phys. Rev. D 76, 084028 (2007), 0705.0674 .
- F. Conrady and J. Hnybida, Class. Quant. Grav. 27, 185011 (2010), arXiv:1002.1959 [gr-qc] .
- F. Conrady, Class. Quant. Grav. 27, 155014 (2010), arXiv:1003.5652 [gr-qc] .
- J. D. Simão and S. Steinhaus, Phys. Rev. D 104, 126001 (2021), arXiv:2106.15635 [gr-qc] .
- H. Liu and M. Han, Phys. Rev. D 99, 084040 (2019), arXiv:1810.09042 [gr-qc] .
- J. D. Simão, (2024a), arXiv:2402.05993 [gr-qc] .
- J. D. Simão, (2024b), arXiv:2401.10324 .
- V. Bargmann, Annals Math. 48, 568 (1947).
- W. Rühl, The Lorentz Group and Harmonic Analysis, Mathematical physics monograph series (W. A. Benjamin, 1970).
- A. M. Perelomov, Generalized coherent states and their applications (1986).
- F. Conrady and L. Freidel, Phys. Rev. D78, 104023 (2008), arXiv:0809.2280 [gr-qc] .
- L. Hörmander, “The fourier transformation,” in The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003) pp. 158–250.
- R. D. Sorkin, (2019), arXiv:1908.10022 [gr-qc] .
- E. R. Livine and D. Oriti, Nucl. Phys. B 663, 231 (2003), arXiv:gr-qc/0210064 .
- E. Bianchi and P. Martin-Dussaud, (2021), arXiv:2109.00986 .
- J. Engle and A. Zipfel, Phys. Rev. D 94, 064024 (2016), arXiv:1502.04640 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.