Papers
Topics
Authors
Recent
2000 character limit reached

The quasi-isometry invariance of the Coset Intersection Complex

Published 25 Apr 2024 in math.GR and math.GT | (2404.16628v3)

Abstract: For a pair $(G,\mathcal{P})$ consisting of a group and finite collection of subgroups, we introduce a simplicial $G$-complex $\mathcal{K}(G,\mathcal{P})$ called the coset intersection complex. We prove that the quasi-isometry type and the homotopy type of $\mathcal{K}(G,\mathcal{P})$ are quasi-isometric invariants of the group pair $(G,\mathcal{P})$. Classical properties of $\mathcal{P}$ in $G$ correspond to topological or geometric properties of $\mathcal{K}(G,\mathcal{P})$, such as having finite height, having finite width, being almost malnormal, admiting a malnormal core, or having thickness of order one. As applications, we obtain that a number of algebraic properties of $\mathcal{P}$ in $G$ are quasi-isometry invariants of the pair $(G,\mathcal{P})$. For a certain class of right-angled Artin groups and their maximal parabolic subgroups, we show that the complex $\mathcal{K}(G,\mathcal{P})$ is quasi-isometric to the Extension graph; in particular, it is quasi-isometric to a tree.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Residual finiteness, QCERF and fillings of hyperbolic groups. Geometry & Topology, 13(2):1043 – 1073, 2009.
  2. Intersection properties of stable subgroups and bounded cohomology. Indiana University Mathematics Journal, 68(1):pp. 179–199, 2019.
  3. Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann., 344(3):543–595, 2009.
  4. Mladen Bestvina. Questions in geometric group theory. https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf, 2004. 2023-10-16.
  5. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
  6. Geometry and rigidity of mapping class groups. Geom. Topol., 16(2):781–888, 2012.
  7. The asymptotic geometry of right-angled Artin groups. I. Geom. Topol., 12(3):1653–1699, 2008.
  8. Relative hyperbolicity and Artin groups. Geom. Dedicata, 129:1–13, 2007.
  9. The K⁢(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 )-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc., 8(3):597–627, 1995.
  10. Pierre Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math., 17:273–302, 1972.
  11. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc., 245(1156):v+152, 2017.
  12. Parabolic and quasiparabolic subgroups of free partially commutative groups. J. Algebra, 318(2):918–932, 2007.
  13. Tree-graded spaces and asymptotic cones of groups. Topology, 44(5):959–1058, 2005. With an appendix by Denis Osin and Mark Sapir.
  14. Rigidity of high dimensional graph manifolds. Astérisque, (372):xxi+177, 2015.
  15. Anthony Genevois. Quasi-isometrically rigid subgroups in right-angled Coxeter groups. Algebr. Geom. Topol., 2021.
  16. Widths of subgroups. Transactions of the American Mathematical Society, 350(1):321–329, 1998.
  17. Eddy Godelle. Parabolic subgroups of Artin groups of type FC. Pacific J. Math., 208(2):243–254, 2003.
  18. Asymptotic geometry of lamplighters over one-ended groups, 2021.
  19. Lamplighter-like geometry of groups, 2024.
  20. Cusped spaces and quasi-isometries of relatively hyperbolic groups, 2020.
  21. On canonical splittings of relatively hyperbolic groups. Israel J. Math., 258(1):249–286, 2023.
  22. Hyperbolically embedded subgroups and quasi-isometries of pairs. Canad. Math. Bull., 66(3):827–843, 2023.
  23. A survey on quasi-isometries of pairs: invariants and rigidity, 2021.
  24. Quasi-isometry invariance of relative filling functions (with an appendix by Ashot Minasyan). Groups Geom. Dyn., 17(4):1483–1515, 2023. With an appendix by Ashot Minasyan.
  25. G. Christopher Hruska. Relative hyperbolicity and relative quasiconvexity for countable groups. Algebr. Geom. Topol., 10(3):1807–1856, 2010.
  26. Packing subgroups in relatively hyperbolic groups. Geometry & Topology, 13(4):1945 – 1988, 2009.
  27. Stature and separability in graphs of groups, 2019.
  28. Quasi-isometries preserve the geometric decomposition of Haken manifolds. Invent. Math., 128(2):393–416, 1997.
  29. Eduardo Martínez-Pedroza. Combination of quasiconvex subgroups of relatively hyperbolic groups. Groups Geom. Dyn., 3(2):317–342, 2009.
  30. Eduardo Martínez-Pedroza and Luis Jorge Sánchez Saldaña. Quasi-isometric rigidity of subgroups and filtered ends. Algebr. Geom. Topol., 22(6):3023–3057, 2022.
  31. Quasi-actions on trees II: Finite depth Bass-Serre trees. Mem. Amer. Math. Soc., 214(1008):vi+105, 2011.
  32. Denis V. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc., 179(843):vi+100, 2006.
  33. Herman Servatius. Automorphisms of graph groups. J. Algebra, 126(1):34–60, 1989.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.