Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The quasi-isometry invariance of the Coset Intersection Complex (2404.16628v3)

Published 25 Apr 2024 in math.GR and math.GT

Abstract: For a pair $(G,\mathcal{P})$ consisting of a group and finite collection of subgroups, we introduce a simplicial $G$-complex $\mathcal{K}(G,\mathcal{P})$ called the coset intersection complex. We prove that the quasi-isometry type and the homotopy type of $\mathcal{K}(G,\mathcal{P})$ are quasi-isometric invariants of the group pair $(G,\mathcal{P})$. Classical properties of $\mathcal{P}$ in $G$ correspond to topological or geometric properties of $\mathcal{K}(G,\mathcal{P})$, such as having finite height, having finite width, being almost malnormal, admiting a malnormal core, or having thickness of order one. As applications, we obtain that a number of algebraic properties of $\mathcal{P}$ in $G$ are quasi-isometry invariants of the pair $(G,\mathcal{P})$. For a certain class of right-angled Artin groups and their maximal parabolic subgroups, we show that the complex $\mathcal{K}(G,\mathcal{P})$ is quasi-isometric to the Extension graph; in particular, it is quasi-isometric to a tree.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Residual finiteness, QCERF and fillings of hyperbolic groups. Geometry & Topology, 13(2):1043 – 1073, 2009.
  2. Intersection properties of stable subgroups and bounded cohomology. Indiana University Mathematics Journal, 68(1):pp. 179–199, 2019.
  3. Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann., 344(3):543–595, 2009.
  4. Mladen Bestvina. Questions in geometric group theory. https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf, 2004. 2023-10-16.
  5. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
  6. Geometry and rigidity of mapping class groups. Geom. Topol., 16(2):781–888, 2012.
  7. The asymptotic geometry of right-angled Artin groups. I. Geom. Topol., 12(3):1653–1699, 2008.
  8. Relative hyperbolicity and Artin groups. Geom. Dedicata, 129:1–13, 2007.
  9. The K⁢(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 )-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc., 8(3):597–627, 1995.
  10. Pierre Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math., 17:273–302, 1972.
  11. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc., 245(1156):v+152, 2017.
  12. Parabolic and quasiparabolic subgroups of free partially commutative groups. J. Algebra, 318(2):918–932, 2007.
  13. Tree-graded spaces and asymptotic cones of groups. Topology, 44(5):959–1058, 2005. With an appendix by Denis Osin and Mark Sapir.
  14. Rigidity of high dimensional graph manifolds. Astérisque, (372):xxi+177, 2015.
  15. Anthony Genevois. Quasi-isometrically rigid subgroups in right-angled Coxeter groups. Algebr. Geom. Topol., 2021.
  16. Widths of subgroups. Transactions of the American Mathematical Society, 350(1):321–329, 1998.
  17. Eddy Godelle. Parabolic subgroups of Artin groups of type FC. Pacific J. Math., 208(2):243–254, 2003.
  18. Asymptotic geometry of lamplighters over one-ended groups, 2021.
  19. Lamplighter-like geometry of groups, 2024.
  20. Cusped spaces and quasi-isometries of relatively hyperbolic groups, 2020.
  21. On canonical splittings of relatively hyperbolic groups. Israel J. Math., 258(1):249–286, 2023.
  22. Hyperbolically embedded subgroups and quasi-isometries of pairs. Canad. Math. Bull., 66(3):827–843, 2023.
  23. A survey on quasi-isometries of pairs: invariants and rigidity, 2021.
  24. Quasi-isometry invariance of relative filling functions (with an appendix by Ashot Minasyan). Groups Geom. Dyn., 17(4):1483–1515, 2023. With an appendix by Ashot Minasyan.
  25. G. Christopher Hruska. Relative hyperbolicity and relative quasiconvexity for countable groups. Algebr. Geom. Topol., 10(3):1807–1856, 2010.
  26. Packing subgroups in relatively hyperbolic groups. Geometry & Topology, 13(4):1945 – 1988, 2009.
  27. Stature and separability in graphs of groups, 2019.
  28. Quasi-isometries preserve the geometric decomposition of Haken manifolds. Invent. Math., 128(2):393–416, 1997.
  29. Eduardo Martínez-Pedroza. Combination of quasiconvex subgroups of relatively hyperbolic groups. Groups Geom. Dyn., 3(2):317–342, 2009.
  30. Eduardo Martínez-Pedroza and Luis Jorge Sánchez Saldaña. Quasi-isometric rigidity of subgroups and filtered ends. Algebr. Geom. Topol., 22(6):3023–3057, 2022.
  31. Quasi-actions on trees II: Finite depth Bass-Serre trees. Mem. Amer. Math. Soc., 214(1008):vi+105, 2011.
  32. Denis V. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc., 179(843):vi+100, 2006.
  33. Herman Servatius. Automorphisms of graph groups. J. Algebra, 126(1):34–60, 1989.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.