Papers
Topics
Authors
Recent
2000 character limit reached

Two qubit gate with macroscopic singlet-triplet qubits in synthetic spin-one chains in InAsP quantum dot nanowires (2404.16229v1)

Published 24 Apr 2024 in cond-mat.mes-hall and quant-ph

Abstract: We present a theory of a two qubit gate with macroscopic singlet-triplet (ST) qubits in synthetic spin-one chains in InAsP quantum dot nanowires. The macroscopic topologically protected singlet-triplet qubits are built with two spin-half Haldane quasiparticles. The Haldane quasiparticles are hosted by synthetic spin-one chain realized in chains of InAsP quantum dots embedded in an InP nanowire, with four electrons each. The quantum dot nanowire is described by a Hubbard-Kanamori (HK) Hamiltonian derived from an interacting atomistic model. Using exact diagonalization and Matrix Product States (MPS) tools, we demonstrate that the low-energy behavior of the HK Hamiltonian is effectively captured by an antiferromagnetic spin-one chain Hamiltonian. Next we consider two macroscopic qubits and present a method for creating a tunable coupling between the two macroscopic qubits by inserting an intermediate control dot between the two chains. Finally, we propose and demonstrate two approaches for generating highly accurate two-ST qubit gates : (1) by controlling the length of each qubit, and (2) by employing different background magnetic fields for the two qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation, New Journal of Physics 13, 095004 (2011).
  2. J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj quantum information 3, 2 (2017).
  3. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, nature 409, 46 (2001).
  4. T. Northup and R. Blatt, Quantum information transfer using photons, Nature photonics 8, 356 (2014).
  5. M. Korkusinski and P. Hawrylak, Energy-band structure: Energy-band gaps, in Semiconductor Quantum Bits (Jenny Stanford Publishing, 2008) Chap. 1, pp. 3–32.
  6. C. Kloeffel and D. Loss, Prospects for spin-based quantum computing in quantum dots, Annual Review of Condensed Matter Physics 4, 51 (2013).
  7. J. A. Brum and P. Hawrylak, Coupled quantum dots as quantum exclusive-OR gate, Superlattices and Microstructures 22, 431 (1997).
  8. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
  9. J. D. Sau and S. D. Sarma, Realizing a robust practical majorana chain in a quantum-dot-superconductor linear array, Nature communications 3, 964 (2012).
  10. F. Meier, J. Levy, and D. Loss, Quantum computing with antiferromagnetic spin clusters, Phys. Rev. B 68, 134417 (2003).
  11. N. Chancellor and S. Haas, Using the J1⁢–⁢J2subscript𝐽1–subscript𝐽2J_{1}–J_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT – italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT quantum spin chain as an adiabatic quantum data bus, New Journal of Physics 14, 095025 (2012).
  12. B. Jaworowski and P. Hawrylak, Quantum bits with macroscopic topologically protected states in semiconductor devices, Applied Sciences 9 (2019).
  13. P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79, 3306 (1997).
  14. P. Zanardi and F. Rossi, Quantum information in semiconductors: Noiseless encoding in a quantum-dot array, Phys. Rev. Lett. 81, 4752 (1998).
  15. J. Manalo, D. Miravet, and P. Hawrylak, Microscopic design of a synthetic spin-1 chain in an InAsP quantum dot array, Phys. Rev. B 109, 085112 (2024).
  16. F. Haldane, Continuum dynamics of the 1-D heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Physics Letters A 93, 464 (1983).
  17. F. D. M. Haldane, Nobel lecture: Topological quantum matter, Rev. Mod. Phys. 89, 040502 (2017).
  18. G. Catarina and J. Fernández-Rossier, Hubbard model for spin-1 haldane chains, Phys. Rev. B 105, L081116 (2022).
  19. S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
  20. U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
  21. B. Jaworowski, Electron Correlations in Topological Flat Bands, Ph.D. thesis, Wroclaw University of Science and Technology (2018).
  22. M. A. Nielsen and I. L. Chuang, Quantum circuits, in Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010) Chap. 4, pp. 171–215.
  23. J. Levy, Universal quantum computation with spin-1/2121/21 / 2 pairs and heisenberg exchange, Phys. Rev. Lett. 89, 147902 (2002).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.