Measurement of enhanced spin-orbit coupling strength for donor-bound electron spins in silicon (2404.15762v1)
Abstract: While traditionally considered a deleterious effect in quantum dot spin qubits, the spin-orbit interaction is recently being revisited as it allows for rapid coherent control by on-chip AC electric fields. For electrons in bulk silicon, SOC is intrinsically weak, however, it can be enhanced at surfaces and interfaces, or through atomic placement. Here we show that the strength of the spin-orbit coupling can be locally enhanced by more than two orders of magnitude in the manybody wave functions of multi-donor quantum dots compared to a single donor, reaching strengths so far only reported for holes or two-donor system with certain symmetry. Our findings may provide a pathway towards all-electrical control of donor-bound spins in silicon using electric dipole spin resonance (EDSR).
- T. F. Watson, S. G. J. Philips, K. E., D. R. Ward, S. P., V. M., D. E. Savage, M. G. Lagally, M. Friesen, M. A. Coppersmith, S. N. Eriksson, and V. L. M. K., “A programmable two-qubit quantum processor in silicon,” Nature, vol. 555, pp. 633––637, 2018.
- Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and M. Y. Simmons, “A two-qubit gate between phosphorus donor electrons in silicon,” Nature, vol. 571, no. 7765, p. 371, 2019.
- T. F. Watson, B. Weber, Y.-L. Hsueh, L. C. Hollenberg, R. Rahman, and M. Y. Simmons, “Atomically engineered electron spin lifetimes of 30 s in silicon,” Science Advances, vol. 3, no. 3, p. e1602811, 2017.
- W. M. Witzel, M. S. Carroll, A. Morello, Ł. Cywiński, and S. D. Sarma, “Electron spin decoherence in isotope-enriched silicon,” Physical Review Letters, vol. 105, no. 18, p. 187602, 2010.
- M. Veldhorst, J. Hwang, C. Yang, A. Leenstra, B. de Ronde, J. Dehollain, J. Muhonen, F. Hudson, K. M. Itoh, A. Morello, et al., “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nature Nanotechnology, vol. 9, no. 12, p. 981, 2014.
- F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, “Silicon quantum electronics,” Reviews of Modern Physics, vol. 85, no. 3, p. 961, 2013.
- B. Weber, Y.-L. Hsueh, T. F. Watson, R. Li, A. R. Hamilton, L. C. Hollenberg, R. Rahman, and M. Y. Simmons, “Spin–orbit coupling in silicon for electrons bound to donors,” npj Quantum Information, vol. 4, no. 1, pp. 1–5, 2018.
- Y. Song and S. D. Sarma, “Spin-orbit coupling induced two-electron relaxation in silicon donor pairs,” Physical Review B, vol. 96, no. 11, p. 115444, 2017.
- P. Scarlino, E. Kawakami, P. Stano, M. Shafiei, C. Reichl, W. Wegscheider, and L. Vandersypen, “Spin-relaxation anisotropy in a gaas quantum dot,” Physical Review Letters, vol. 113, no. 25, p. 256802, 2014.
- J. I. Climente, C. Segarra, and J. Planelles, “Spin–orbit-induced hole spin relaxation in inas and gaas quantum dots,” New Journal of Physics, vol. 15, no. 9, p. 093009, 2013.
- D. Stepanenko, M. Rudner, B. I. Halperin, and D. Loss, “Singlet-triplet splitting in double quantum dots due to spin-orbit and hyperfine interactions,” Physical Review B, vol. 85, no. 7, p. 075416, 2012.
- R. Ferdous, K. W. Chan, M. Veldhorst, J. Hwang, C. Yang, H. Sahasrabudhe, G. Klimeck, A. Morello, A. S. Dzurak, and R. Rahman, “Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability,” Physical Review B, vol. 97, no. 24, p. 241401, 2018.
- S. Nadj-Perge, S. Frolov, E. Bakkers, and L. P. Kouwenhoven, “Spin–orbit qubit in a semiconductor nanowire,” Nature, vol. 468, no. 7327, pp. 1084–1087, 2010.
- M. Shafiei, K. Nowack, C. Reichl, W. Wegscheider, and L. Vandersypen, “Resolving spin-orbit-and hyperfine-mediated electric dipole spin resonance in a quantum dot,” Physical Review Letters, vol. 110, no. 10, p. 107601, 2013.
- E. I. Rashba, “Theory of electric dipole spin resonance in quantum dots: Mean field theory with gaussian fluctuations and beyond,” Physical Review B, vol. 78, no. 19, p. 195302, 2008.
- R. Ferdous, E. Kawakami, P. Scarlino, M. P. Nowak, D. Ward, D. Savage, M. Lagally, S. Coppersmith, M. Friesen, M. A. Eriksson, et al., “Valley dependent anisotropic spin splitting in silicon quantum dots,” npj Quantum Information, vol. 4, no. 1, pp. 1–8, 2018.
- R. Ruskov, M. Veldhorst, A. S. Dzurak, and C. Tahan, “Electron g-factor of valley states in realistic silicon quantum dots,” Physical Review B, vol. 98, no. 24, p. 245424, 2018.
- M. Veldhorst, R. Ruskov, C. Yang, J. Hwang, F. Hudson, M. Flatté, C. Tahan, K. M. Itoh, A. Morello, and A. Dzurak, “Spin-orbit coupling and operation of multivalley spin qubits,” Physical Review B, vol. 92, no. 20, p. 201401, 2015.
- A. Corna, L. Bourdet, R. Maurand, A. Crippa, D. Kotekar-Patil, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, X. Jehl, et al., “Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot,” npj Quantum Information, vol. 4, no. 1, pp. 1–7, 2018.
- W. Huang, M. Veldhorst, N. M. Zimmerman, A. S. Dzurak, and D. Culcer, “Electrically driven spin qubit based on valley mixing,” Physical Review B, vol. 95, no. 7, p. 075403, 2017.
- W. Huang, C. Yang, K. Chan, T. Tanttu, B. Hensen, R. Leon, M. Fogarty, J. Hwang, F. Hudson, K. M. Itoh, et al., “Fidelity benchmarks for two-qubit gates in silicon,” Nature, vol. 569, no. 7757, pp. 532–536, 2019.
- F. Krauth, S. Gorman, Y. He, M. Jones, P. Macha, S. Kocsis, C. Chua, B. Voisin, S. Rogge, R. Rahman, et al., “Flopping-mode electric dipole spin resonance in phosphorus donor qubits in silicon,” Physical Review Applied, vol. 17, no. 5, p. 054006, 2022.
- D. Q. Wang, O. Klochan, J.-T. Hung, D. Culcer, I. Farrer, D. A. Ritchie, and A. R. Hamilton, “Anisotropic pauli spin blockade of holes in a gaas double quantum dot,” Nano Letters, vol. 16, no. 12, pp. 7685–7689, 2016.
- R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton, “Pauli spin blockade of heavy holes in a silicon double quantum dot,” Nano Letters, vol. 15, no. 11, pp. 7314–7318, 2015.
- R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, et al., “A cmos silicon spin qubit,” Nature Communications, vol. 7, no. 1, pp. 1–6, 2016.
- J. van der Heijden, T. Kobayashi, M. G. House, J. Salfi, S. Barraud, R. Laviéville, M. Y. Simmons, and S. Rogge, “Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor,” Science Advances, vol. 4, no. 12, p. eaat9199, 2018.
- D. V. Bulaev and D. Loss, “Electric dipole spin resonance for heavy holes in quantum dots,” Physical Review Letters, vol. 98, no. 9, p. 097202, 2007.
- J. Salfi, M. Tong, S. Rogge, and D. Culcer, “Quantum computing with acceptor spins in silicon,” Nanotechnology, vol. 27, no. 24, p. 244001, 2016.
- D. V. Bulaev and D. Loss, “Spin relaxation and decoherence of holes in quantum dots,” Physical Review Letters, vol. 95, no. 7, p. 076805, 2005.
- C. Testelin, F. Bernardot, B. Eble, and M. Chamarro, “Hole–spin dephasing time associated with hyperfine interaction in quantum dots,” Physical Review B, vol. 79, no. 19, p. 195440, 2009.
- P. Harvey-Collard, N. T. Jacobson, C. Bureau-Oxton, R. M. Jock, V. Srinivasa, A. M. Mounce, D. R. Ward, J. M. Anderson, R. P. Manginell, J. R. Wendt, et al., “Spin-orbit interactions for singlet-triplet qubits in silicon,” Physical Review Letters, vol. 122, no. 21, p. 217702, 2019.
- T. Tanttu, B. Hensen, K. W. Chan, C. H. Yang, W. W. Huang, M. Fogarty, F. Hudson, K. Itoh, D. Culcer, A. Laucht, et al., “Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction,” Physical Review X, vol. 9, no. 2, p. 021028, 2019.
- Y.-L. Hsueh, D. Keith, Y. Chung, S. K. Gorman, L. Kranz, S. Monir, Z. Kembrey, J. G. Keizer, R. Rahman, and M. Y. Simmons, “Engineering spin-orbit interactions in silicon qubits at the atomic-scale,” Advanced Materials, p. 2312736, 2024.
- M. Nestoklon, E. Ivchenko, J.-M. Jancu, and P. Voisin, “Electric field effect on electron spin splitting in si ge/ si quantum wells,” Physical Review B, vol. 77, no. 15, p. 155328, 2008.
- R. M. Jock, N. T. Jacobson, P. Harvey-Collard, A. M. Mounce, V. Srinivasa, D. R. Ward, J. Anderson, R. Manginell, J. R. Wendt, M. Rudolph, et al., “A silicon metal-oxide-semiconductor electron spin-orbit qubit,” Nature Communications, vol. 9, no. 1, pp. 1–8, 2018.
- S. Lee, H. Koike, M. Goto, S. Miwa, Y. Suzuki, N. Yamashita, R. Ohshima, E. Shigematsu, Y. Ando, and M. Shiraishi, “Synthetic rashba spin–orbit system using a silicon metal-oxide semiconductor,” Nature Materials, vol. 20, no. 9, pp. 1228–1232, 2021.
- S. Liles, R. Li, C. Yang, F. Hudson, M. Veldhorst, A. S. Dzurak, and A. Hamilton, “Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot,” Nature Communications, vol. 9, no. 1, pp. 1–7, 2018.
- G. Klimeck, S. S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, et al., “Atomistic simulation of realistically sized nanodevices using nemo 3-d—part i: Models and benchmarks,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2079–2089, 2007.
- B. Weber, S. Mahapatra, T. F. Watson, and M. Y. Simmons, “Engineering independent electrostatic control of atomic-scale ( 4 nm) silicon double quantum dots,” Nano Letters, vol. 12, no. 8, pp. 4001–4006, 2012.
- M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. Hollenberg, G. Klimeck, and M. Y. Simmons, “A single-atom transistor,” Nature Nanotechnology, vol. 7, no. 4, p. 242, 2012.
- B. Weber, Y. M. Tan, S. Mahapatra, T. F. Watson, H. Ryu, R. Rahman, L. C. Hollenberg, G. Klimeck, and M. Y. Simmons, “Spin blockade and exchange in coulomb-confined silicon double quantum dots,” Nature Nanotechnology, vol. 9, no. 6, p. 430, 2014.
- S. Tarucha, D. Austing, T. Honda, R. Van der Hage, and L. P. Kouwenhoven, “Shell filling and spin effects in a few electron quantum dot,” Physical Review Letters, vol. 77, no. 17, p. 3613, 1996.
- H. Liu, T. Fujisawa, T. Hayashi, and Y. Hirayama, “Pauli spin blockade in cotunneling transport through a double quantum dot,” Physical Review B, vol. 72, no. 16, p. 161305, 2005.
- W. Coish and F. Qassemi, “Leakage-current line shapes from inelastic cotunneling in the pauli spin blockade regime,” Physical Review B, vol. 84, no. 24, p. 245407, 2011.
- N. Lai, W. Lim, C. Yang, F. Zwanenburg, W. Coish, F. Qassemi, A. Morello, and A. Dzurak, “Pauli spin blockade in a highly tunable silicon double quantum dot,” Scientific Reports, vol. 1, p. 110, 2011.
- L. Kranz, S. K. Gorman, B. Thorgrimsson, Y. He, D. Keith, J. G. Keizer, and M. Y. Simmons, “Exploiting a single-crystal environment to minimize the charge noise on qubits in silicon,” Advanced Materials, vol. 32, no. 40, p. 2003361, 2020.
- S. Moriyama, J. Martinek, G. Ilnicki, T. Fuse, and K. Ishibashi, “Inelastic cotunneling mediated singlet-triplet transition in carbon nanotubes,” Physical Review B, vol. 80, no. 3, p. 033408, 2009.
- M. Borhani and X. Hu, “Two-spin relaxation of p dimers in silicon,” Physical Review B, vol. 82, no. 24, p. 241302, 2010.
- A. Johnson, J. R. Petta, J. Taylor, A. Yacoby, M. Lukin, C. Marcus, M. Hanson, and A. Gossard, “Triplet–singlet spin relaxation via nuclei in a double quantum dot,” Nature, vol. 435, no. 7044, pp. 925–928, 2005.
- J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science, vol. 309, no. 5744, pp. 2180–2184, 2005.
- E. Laird, J. R. Petta, A. C. Johnson, C. Marcus, A. Yacoby, M. Hanson, and A. Gossard, “Effect of exchange interaction on spin dephasing in a double quantum dot,” Physical Review Letters, vol. 97, no. 5, p. 056801, 2006.
- J. R. Petta, J. Taylor, A. Johnson, A. Yacoby, M. Lukin, C. Marcus, M. Hanson, and A. Gossard, “Dynamic nuclear polarization with single electron spins,” Physical Review Letters, vol. 100, no. 6, p. 067601, 2008.
- T. Meunier, I. Vink, L. W. van Beveren, K. Tielrooij, R. Hanson, F. Koppens, H. Tranitz, W. Wegscheider, L. Kouwenhoven, and L. Vandersypen, “Experimental signature of phonon-mediated spin relaxation in a two-electron quantum dot,” Physical Review Letters, vol. 98, no. 12, p. 126601, 2007.
- S. Amasha, K. MacLean, I. Radu, D. Zumbuhl, M. Kastner, M. Hanson, and A. Gossard, “Measurements of the spin relaxation rate at low magnetic fields in a quantum dot,” arXiv preprint cond-mat/0607110, 2006.
- C. Yang, A. Rossi, R. Ruskov, N. Lai, F. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. Dzurak, “Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting,” Nature Communications, vol. 4, no. 1, pp. 1–8, 2013.
- M. Fuechsle, S. Mahapatra, F. Zwanenburg, M. Friesen, M. Eriksson, and M. Y. Simmons, “Spectroscopy of few-electron single-crystal silicon quantum dots,” Nature Nanotechnology, vol. 5, no. 7, p. 502, 2010.
- C. Tahan and R. Joynt, “Relaxation of excited spin, orbital, and valley qubit states in ideal silicon quantum dots,” Physical Review B, vol. 89, no. 7, p. 075302, 2014.
- G. Klimeck, S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, T. Boykin, and R. Rahman, “Atomistic simulation of realistically sized nanodevices using NEMO 3-d—part i: Models and benchmarks,” IEEE Transactions on Electron Devices, vol. 54, pp. 2079–2089, Sept. 2007.
- R. Rahman, G. Lansbergen, J. Verduijn, G. Tettamanzi, S. Park, N. Collaert, S. Biesemans, G. Klimeck, L. Hollenberg, and S. Rogge, “Electric field reduced charging energies and two-electron bound excited states of single donors in silicon,” Physical Review B, vol. 84, no. 11, p. 115428, 2011.
- D. Chadi, “Spin-orbit splitting in crystalline and compositionally disordered semiconductors,” Physical Review B, vol. 16, no. 2, p. 790, 1977.
- T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp 3 d 5 s* empirical tight-binding model applied to a si and ge parametrization,” Physical Review B, vol. 69, no. 11, p. 115201, 2004.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.