Papers
Topics
Authors
Recent
Search
2000 character limit reached

NMBEnet: Efficient Near-field mmWave Beam Training for Multiuser OFDM Systems Using Sub-6 GHz Pilots

Published 23 Apr 2024 in cs.IT, eess.SP, and math.IT | (2404.15469v1)

Abstract: Combining millimetre-wave (mmWave) communications with an extremely large-scale antenna array (ELAA) presents a promising avenue for meeting the spectral efficiency demands of the future sixth generation (6G) mobile communications. However, beam training for mmWave ELAA systems is challenged by excessive pilot overheads as well as insufficient accuracy, as the huge near-field codebook has to be accounted for. In this paper, inspired by the similarity between far-field sub-6 GHz channels and near-field mmWave channels, we propose to leverage sub-6 GHz uplink pilot signals to directly estimate the optimal near-field mmWave codeword, which aims to reduce pilot overhead and bypass the channel estimation. Moreover, we adopt deep learning to perform this dual mapping function, i.e., sub-6 GHz to mmWave, far-field to near-field, and a novel neural network structure called NMBEnet is designed to enhance the precision of beam training. Specifically, when considering the orthogonal frequency division multiplexing (OFDM) communication scenarios with high user density, correlations arise both between signals from different users and between signals from different subcarriers. Accordingly, the convolutional neural network (CNN) module and graph neural network (GNN) module included in the proposed NMBEnet can leverage these two correlations to further enhance the precision of beam training.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.